
  

Mathematical Induction
Part Two



  

Announcements

● Problem Set 1 due Friday, October 4 at 
the start of class.

● Problem Set 1 checkpoints graded, will 
be returned at end of lecture.
● Afterwards, will be available in the filing 

cabinets in the Gates Open Area near the 
submissions box.



  

The principle of mathematical induction 
states that if for some P(n) the following hold:

P(0) is true

and

For any n ∈ ℕ, we have P(n) → P(n + 1)

then

For any n ∈ ℕ, P(n) is true.

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Theorem: For any natural number n, 

Proof: By induction.  Let P(n) be
 

P(n) ≡                  
 

For our base case, we need to show P(0) is true, meaning that 
 

Since 20 – 1 = 0 and the left-hand side is the empty sum, P(0)
holds.

For the inductive step, assume that for some n ∈ ℕ, that P(n)
holds, so 

We need to show that P(n + 1) holds, meaning that
 

To see this, note that
 

Thus P(n + 1) holds, completing the induction. ■
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Induction in Practice

● Typically, a proof by induction will not 
explicitly state P(n).

● Rather, the proof will describe P(n) implicitly 
and leave it to the reader to fill in the details.

● Provided that there is sufficient detail to 
determine
● what P(n) is,
● that P(0) is true, and that
● whenever P(n) is true, P(n + 1) is true,

the proof is usually valid.



  

Theorem: For any natural number n,
 
Proof: By induction on n.  For our base case, if n = 0, note that

and the theorem is true for 0.  

For the inductive step, assume that for some n the theorem is
true.  Then we have that 

so the theorem is true for n + 1, completing the induction. ■
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Variations on Induction: Starting Later



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any n ≥ 0, that 

P(n) → P(n + 1).
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at k

● To prove that P(n) is true for all natural 
numbers greater than or equal to k:
● Show that P(k) is true.
● Show that for any n ≥ k, that

P(n) → P(n + 1).
● Conclude P(n) holds for all natural numbers 

greater than or equal to k.

● Pretty much identical to before, except 
that the induction begins at a later point.



  

Convex Polygons

● A convex polygon is a polygon where, 
for any two points in or on the polygon, 
the line between those points is 
contained within the polygon.



  

Useful Fact

● Theorem: Any line drawn through a 
convex polygon splits that polygon into 
two convex polygons.



  

Summing Angles

● Interesting fact: the sum of the angles in 
a convex polygon depends only on the 
number of vertices in the polygon, not 
the shape of that polygon.

● Theorem: For any convex polygon with n 
vertices, the sum of the angles in that 
polygon is (n – 2) · 180°.
● Angles in a triangle add up to 180°.
● Angles in a quadrilateral add up to 360°.
● Angles in a pentagon add up to 540°.



  

Theorem: The sum of the angles in any convex polygon with n vertices
is (n – 2) · 180°.

Proof: By induction. Let P(n) be “all convex polygons with n vertices
have angles that sum to (n – 2) · 180°.” We will prove P(n) holds for
all n ∈ ℕ where n ≥ 3. As a base case, we prove P(3): the sum of the
angles in any convex polygon with three vertices is 180°. Any such
polygon is a triangle, so its angles sum to 180°.

For the inductive step, assume for some n ≥ 3 that P(n) holds and all 
convex polygons with n vertices have angles that sum to (n–2) · 180°. 
We prove P(n+1), that the sum of the angles in any convex polygon 
with n+1 vertices is (n–1) · 180°. Let A be an arbitrary convex 
polygon with n+1 vertices. Take any three consecutive vertices in A 
and draw a line from the first to the third, as shown here:
 

 

The sum of the angles in A is equal to the sum of the angles in 
triangle B (180°) and the sum of the angles in convex polygon C 
(which, by the IH, is (n – 2) · 180°).  Therefore, the sum of the angles 
in A is (n–1) · 180°. Thus P(n + 1) holds, completing the induction. ■

CB      A



  

A Different Proof Approach



  

Using Induction

● Many proofs that work by induction can 
be written non-inductively by using 
similar arguments.

● Don't feel that you have to use induction; 
it's one of many tools in your proof 
toolbox!



  

Variations on Induction: Bigger Steps



  

Subdividing a Square



  

For what values of n can a square be 
subdivided into n squares?



  

The Key Insight



  

The Key Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, it is possible to subdivide a square into n
squares.

Proof: By induction.  Let P(n) be “a square can be subdivided into
n squares.”  We will prove P(n) holds for all n ≥ 6.

As our base cases, we prove P(6), P(7), and P(8), that a square 
can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some n ≥ 6 that P(n) is 
true and a square can be subdivided into n squares.  We prove 
P(n + 3), that a square can be subdivided into n + 3 squares.  
To see this, obtain a subdivision of a square into n squares.  
Then, choose a square and split it into four equal squares.  
This removes one of the n squares and adds four more, so 
there are now n + 3 total squares.  Thus P(n + 3) holds, 
completing the induction. ■
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Generalizing Induction

● When doing a proof by induction:
● Feel free to use multiple base cases.
● Feel free to take steps of sizes other than 

one.

● Just be careful to make sure you cover all 
the numbers you think that you're 
covering!



  

Variations on Induction: Complete Induction



  

An Observation

P(n) → P(n + 1)

P(0) P(1) P(2) P(3) P(4) P(5)



  

An Observation

● In a proof by induction, the inductive 
step works as follows:
● Assume that for some particular n that P(n) 

is true.
● Prove that P(n + 1) is true.

● Notice: When trying to prove P(n + 1), 
we already know P(0), P(1), P(2), …, P(n) 
but only assume P(n) is true.

● Why are we discarding all the 
intermediary results?



  

Complete Induction

● If the following are true:
● P(0) is true, and
● If P(0), P(1), P(2), …, P(n) are true, then P(n+1) 

is true as well.

● Then P(n) is true for all n ∈ ℕ.
● This is called the principle of complete 

induction or the principle of strong 
induction.
● (A note: this also works starting from a number 

other than 0; just modify what you're assuming 
appropriately.)



  

Proof by Complete Induction

● State that your proof works by complete induction.

● State your choice of P(n).

● Prove the base case: state what P(0) is, then prove it 
using any technique you'd like.

● Prove the inductive step:

● State that for some arbitrary n ∈ ℕ that you're 
assuming P(0), P(1), …, P(n) (that is, P(n') for all 
natural numbers 0 ≤ n' ≤ n.)

● State that you are trying to prove P(n + 1) and what 
P(n + 1) means.

● Prove P(n + 1) using any technique you'd like.



  

Example: Polygon Triangulation



  

Polygon Triangulation

● Given a convex polygon, an elementary 
triangulation of that polygon is a way of 
connecting the vertices with lines such 
that
● No two lines intersect, and
● The polygon is converted into a set of 

triangles.

● Question: How many lines do you have to 
draw to elementarily triangulate a 
convex polygon?



  

Elementary Triangulations



  

Elementary Triangulations



  

Elementary Triangulations



  

Some Observations

● Every elementary triangulation of the same 
convex polygon seems to require the same 
number of lines.

● The number of lines depends on the number 
of vertices:
● 5 vertices: 2 lines
● 6 vertices: 3 lines
● 8 vertices: 5 lines

● Conjecture: Every elementary triangulation 
of an n-vertex convex polygon requires n – 3 
lines.



  

Elementary Triangulations

k
vertices

n – k + 2 
vertices



  

Theorem: Every elementary triangulation of a convex polygon with n
vertices requires n – 3 lines.

Proof: By complete induction. Let P(n) be “every elementary 
triangulation of a convex polygon requires n–3 lines.” We prove
P(n) holds for all n ≥ 3. As a base case, we prove P(3):
elementarily triangulating a convex polygon with three vertices
requires no lines. Any polygons with three vertices is a triangle,
so any elementary triangulation of it will have no lines.

For the inductive step, assume for some n ≥ 3 that P(3), P(4), …, 
P(n) are true. This means any elementary triangulation of an 
n'-vertex convex polygon, where 3 ≤ n' ≤ n, uses n'–3 lines. We 
prove P(n+1): any elementary triangulation of any (n+1)-vertex 
convex polygon uses n–2 lines.

Let A be an arbitrary convex polygon with n+1 vertices. Pick any 
elementary triangulation of A and select an arbitrary line in that 
triangulation. This line splits A into two smaller convex polygons 
B and C, which are also triangulated. Let k be the number of 
vertices in B, meaning C has (n+1)–k+2 = n–k+3 vertices. By our 
inductive hypothesis, any triangulations of B and C must use k–3 
and n–k lines, respectively. Therefore, the total number of lines in 
the triangulation of A is n–k+k–3+1 = n–2. Thus P(n+1) holds, 
completing the induction. ■



  

Using Complete Induction

● When is it appropriate to use complete 
induction in contrast to standard induction?

● Depends on the proof approach:
● Typically, standard induction is used when a 

problem of size n + 1 is reduced to a simpler 
problem of size n.

● Typically, complete induction is used when the 
problem of size n + 1 is split into multiple 
subproblems of unknown but smaller sizes.

● It is never “wrong” to use complete induction.  
It just might be unnecessary.  We suggest 
writing drafts of your proofs just in case.



  

Summary

● Induction doesn't have to start at 0.  It's 
perfectly fine to start induction later on.

● Induction doesn't have to take steps of size 1. 
It's not uncommon to see other step sizes.

● Induction doesn't have to have a single base 
case.

● Complete induction lets you assume all prior 
results, not just the last result.



  

Next Time

● Graphs
● Representing relationships between objects.
● Connectivity in graphs.
● Planar graphs.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

