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Cyclic Codes

Definition
A cyclic code C of length n is a linear subspace of Fn

q stable under the
action of the cyclic group C =< c >∼= Z/nZ which acts by cyclically
shifting codewords w as follows:

c(w1,w2, . . . ,wn) = (w2,w3, . . . ,wn,w1).

Example
The repetition code: C = {(k, k, . . . k) : k ∈ Fq}

The parity check code: C = {(w1,w2, . . . ,wn) ∈ Fn
q :

∑
wi = 0}
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Cyclic Codes

One has the following isomorphism: Fn
q −→ Fq[x ]/(xn − 1)

w = (w1, . . . ,wn) 7−→
n∑

i=1
wi x i−1

Any cyclic code C will be an ideal of this ring, which is a Principal Ideal
Ring. Thus, the ideal has a single generating polynomial g(x).

C ∼= {h(x)g(x) ∈ Fq[x ]/(xn − 1) : deg(h(x)) < n − deg(g(x))}

The repetition code is generated by 1 + x + ...+ xn−1.
Hamming codes are those generated by primitive polynomials.

Definition
The Dual Code, C⊥ of a cyclic code C generated by g(x) is the cyclic
code generated by g⊥(x) = xn−1

g(x)

The parity check code and the repetition code are duals.
Dual Hamming codes are the duals of Hamming Codes.
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Cyclic Sieving

Definition
Given any set C acted upon by the cyclic group Zn, a polynomial X (t) is a
cyclic sieving polynomial for C if ∀m,X (ζm

n ) = |{w ∈ C : cmw = w}|,
where ζn is a primitive nth root of 1.

Constants are cyclic sieving polynomials for repetition codes.

Question
When do dual Hamming codes exhibit Cyclic sieving?

Some candidates are Mahonian polynomials:

X maj(t) =
∑
w∈C

tmaj(w) and X inv(t) =
∑
w∈C

t inv(w)

where inv(w) := #{(i , j) : 1 ≤ i < j ≤ n and wi > wj},

maj(w) :=
∑

i :wi >wi+1

i .

These are two particular types of Mahonian statistics.
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Primitive Polynomials

Definition
An irreducible polynomial f(x) of degree k over Fq is primitive if the
smallest integer n such that f (x) | xn − 1 is n = qk − 1.

Note: Any irreducible polynomial f (x) of degree k will divide xqk−1 − 1
because Fqk ∼= Fq[x ]/(f (x)) and Fqk \ {0} ∼= Z/(qk − 1)Z

Primitive polynomials over F2 of degree 3:
x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)

x3 + x + 1 and x3 + x2 + 1 are primitive.

Primitive polynomials over F2 of degree 4:
x15−1 = (x +1)(x2 +x +1)(x4 +x +1)(x4 +x3 +1)(x4 +x3 +x2 +x +1)
x4 + x + 1 and x4 + x3 + 1 are primitive while x4 + x3 + x2 + x + 1 is not
because it divides x5 − 1.
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Linear Feedback Shift Register

Let f (x) = xk + ck−1xk−1 + . . . c1x + c0 be an irreducible polynomial.
The Linear Feedback Shift Register (LFSR) of f (x) is a linear map
T : Fk

q 7−→ Fk
q defined as

T (x0, x1, . . . xk−1) = (x1, . . . , xk−1, xk) where xk = −
k−1∑
i=0

ci xi

Property
f(x) is primitive ⇐⇒ LFSR has multiplicative order n = qk − 1

Proof Sketch.
The characteristic polynomial of the matrix of the transformation is
(−1)k f (x) which is irreducible. Hence the minimal polynomial of T is
f (T ). The minimum n such that f (x) | xn − 1 is n = qk − 1.

The LFSR sequence of f (x) : (x0, x1, . . . , xk−1, xk , xk+1, . . . , xn−1).
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Primitive Polynomials

Example: q=2, k=3
We start with x = (0, 0, 1) and f (x) = x3 + x2 + 1.
Thus c0 = 1, c1 = 0, c2 = 10

0
1

 7→
0

1
1

 7→
1

1
1

 7→
1

1
0

 7→
1

0
1

 7→
0

1
0

 7→
1

0
0

 7→
0

0
1


The LFSR sequence is (0,0,1,1,1,0,1)

Corollary
f(x) is primitive ⇐⇒ the set {x,T x...T n−2x} = (Fq)k \ {0}

for some x 6= 0 where T is the LFSR of f (x)

By the Corollary, the LFSR sequence has every possible sequence of
length k as a subsequence exactly once.
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Primitive Polynomials

One of our main results:

Theorem
The coefficient sequence of xn−1

f (x) is the LFSR sequence reversed, where
the sequence is defined to begin at (0,0...1).

Example: q=2, k=3
We use f (x) = x3 + x2 + 1. The LFSR sequence was (0,0,1,1,1,0,1).

x7 − 1
x3 + x2 + 1 = 1 + x2 + x3 + x4

= 1 + 0x + 1x2 + 1x3 + 1x4 + 0x5 + 0x6
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Cyclic Descents

Definition
If w = (w1,w2, ...,wn), a cyclic descent is a pair of consecutive terms
(wi ,wi+1) with wi > wi+1, including possibly the pair (wn,w1). The
cyclic descent number of w , cdes(w), is the number of cyclic descents.

Cyclic descents play in important role in understanding maj(w).

In any LFSR sequence for a primitive polynomial, all possible
subsequences of length k except the 0 subsequence are present, there are
(q − 1)qk−1 subsequences where the last two elements are different,
exactly half of which end in descents.

Example: q=2, k=3
If w = (0, 0, 1, 1, 1, 0, 1), then cdes(w) = 2, as expected.
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Cyclic Descents

The coefficient sequence w of generating polynomial g(x) of the dual
Hamming code, is the reverse of the LFSR sequence.

Thus every k-subsequence except the zero sequence appears in the
coefficient sequence, and cdes(w) = q−1

2 qk−1.

Corollary

When p = 2, 3, the converse is also true: if cdes(w) = q−1
2 qk−1, f is

primitive.

This is true because if gcd(cdes(w), n) = 1, no k-subsequence can repeat.
This is not true in general: it fails at q = 5, k = 3 and q = 7, k = 2.
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Back to Cyclic Sieving

Definition
Hamming codes: codes whose generating polynomial is primitive.
Dual Hamming codes: dual of Hamming codes.

Our first goal is to find when the polynomial X maj(t) is a cyclic sieving
polynomial for dual Hamming codes.

Since (aside from the zero code) all elements of dual Hamming codes are
fixed by only the identity, any CSP must evaluate to 1 for all nth roots of
unity except 1. Also, it should evaluate to n + 1 at t = 1. Thus the CSP
should have the form 1 +

∑n−1
m=0 tm.
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X maj as a CSP

Proposition
Suppose X is a dual Hamming code over F2 or F3. Then, X maj(t) is a
cyclic sieving polynomial for X .

Proof.
The main observation is:

maj(c(w)) =
{

maj(w) + cdes(w)− n if w ends in a descent
maj(w) + cdes(w) if w does not end in a descent

Hence, X maj(t) = 1 +
n−1∑
m=0

tmaj(cmw) = 1 +
n−1∑
m=0

tmaj(w)+m(cdes(w))

.When q = 2, 3, cdes(w) = q−1
2 qk−1 is relatively prime to n, it is a

primitive additive element of Zn. So,

X maj(t) = 1 +
n−1∑
m=0

tmaj(w)+m(cdes(w)) = 1 +
n−1∑
m=0

tm

.
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X inv as a CSP

Proposition
Suppose X is a dual Hamming code over F2. Then, X inv(t) is a cyclic
sieving polynomial for X .

Proof.
This time, the main observation is

inv(c(w)) =
{

inv(w) + 2k−1 − 1 if w ends with 1
inv(w)− 2k−1 if w ends with 0

As before, 2k−1 − 1 and −2k−1 are equal mod n = 2k − 1 and are
coprime to n. Hence,

X maj(t) = 1 +
n−1∑
m=0

t inv(cmw) = 1 +
n−1∑
m=0

t inv(w)+m(2k−1−1) = 1 +
n−1∑
m=0

tm

.
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Summary of results

For q = 2, 3, the triple (X ,X maj(t),C) always gives a CSP for dual
Hamming codes X = C.
For q = 2, 3, an irreducible polynomial f (x) is primitive iff the cyclic
descents in the coefficient sequence of xqk −1−1

f (x) is exactly (q−1)
2 qk−1.

For q = 2, the triple (X ,X inv(t),C) always gives a CSP for dual
Hamming codes X = C.
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