Shruthi Sridhar Shapiro

ssridhar@princeton.edu

STDC 2023

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces

Embedding spaces

æ

▶ ▲ 문 ▶ ▲ 문 ▶

Embedding spaces

Given 2 manifolds M, N, an embedding $f : N \rightarrow M$ is a smooth immersion homeomorphic to its image.

Source: "Mathematics for Physics, An Illustrated Handbook"

< A > < 3 > <

Given 2 manifolds M, N, an embedding $f : N \rightarrow M$ is a smooth immersion homeomorphic to its image.

 $\operatorname{Emb}(N, M)$ will denote the space of embeddings from N to M. (We use the compact open topology).

伺下 イヨト イヨト

Embedding spaces

Given 2 manifolds M, N, an embedding $f : N \rightarrow M$ is a smooth immersion homeomorphic to its image.

 $\operatorname{Emb}(N, M)$ will denote the space of embeddings from N to M. (We use the compact open topology).

An isotopy between 2 embeddings is then a path in Emb(N, M).

Source: Skopenkov https://arxiv.org/pdf/2001.01472v1.pdf

Given 2 manifolds M, N, an embedding $f : N \rightarrow M$ is a smooth immersion homeomorphic to its image.

 $\operatorname{Emb}(N, M)$ will denote the space of embeddings from N to M. (We use the compact open topology).

An isotopy between 2 embeddings is then a path in Emb(N, M).

• • = • • = •

Given 2 manifolds M, N, an embedding $f : N \rightarrow M$ is a smooth immersion homeomorphic to its image.

 $\operatorname{Emb}(N, M)$ will denote the space of embeddings from N to M. (We use the compact open topology).

An isotopy between 2 embeddings is then a path in Emb(N, M).

Let M denote a compact 4-manifold with boundary. The main embedding space in this talk will be:

 $\operatorname{Emb}_{\partial}(I, M) := \{ \text{ embeddings } f : I \to M | \text{ end points of } I \text{ are fixed in } M \}$

伺 ト イ ヨ ト イ ヨ ト

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces

Isotopy classes of knots are $\pi_0(\text{Emb}(S^1, S^3))$.

伺 と く ヨ と く ヨ と …

Isotopy classes of knots are $\pi_0(\text{Emb}(S^1, S^3))$.

 $\pi_1(\text{Emb}(S^1, S^3))$ can show certain symmetries of knots. (Hatcher 2002)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Isotopy classes of knots are $\pi_0(\text{Emb}(S^1, S^3))$.

 $\pi_1(\text{Emb}(S^1, S^3))$ can show certain symmetries of knots. (Hatcher 2002)

A B M A B M

Isotopy classes of knots are $\pi_0(\text{Emb}(S^1, S^3))$.

 $\pi_1(\text{Emb}(S^1,S^3))$ can show certain symmetries of knots. (Hatcher 2002)

Embedded disks and (based) spheres in higher dimensional manifolds can be seen as 1-parameter families or loops in $\text{Emb}_{\partial}(I, M)$ (Kosanovic–Teichner (2022))

Isotopy classes of knots are $\pi_0(\text{Emb}(S^1, S^3))$.

 $\pi_1(\text{Emb}(S^1, S^3))$ can show certain symmetries of knots. (Hatcher 2002)

Embedded disks and (based) spheres in higher dimensional manifolds can be seen as 1-parameter families or loops in $\text{Emb}_{\partial}(I, M)$ (Kosanovic–Teichner (2022))

Budney and Gabai (2021) construct 'knotted balls' in $S^1 \times B^3$ by viewing them as elements of $\pi_2(\text{Emb}_\partial(I, S^1 \times B^3))$.

b 4 3 b 4 3 b

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

Embedded intervals lasso around an embedded S^2 in M:

We will construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ as follows:

伺 ト イヨト イヨト

We will construct elements of $\pi_2(\text{Emb}_\partial(I, M)$ as follows:

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

伺 ト イヨト イヨト

We will construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ as follows:

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Construct a map $S^1 \times S^1 \to \operatorname{Emb}_\partial(I, M)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We will construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ as follows:

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Construct a map $S^1 imes S^1 o \mathsf{Emb}_\partial(I, M)$
- Quotient out by a null homotopy of $S^1 \vee S^1 \to \mathsf{Emb}_\partial(I, M)$

周 ト イ ヨ ト イ ヨ ト

We will construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ as follows:

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Construct a map $S^1 imes S^1 o \mathsf{Emb}_\partial(I, M)$
- Quotient out by a null homotopy of $S^1 \vee S^1 \to \mathsf{Emb}_\partial(I, M)$

イロト イヨト イヨト イヨト

æ
Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

• • = • • = •

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

4 3 6 4 3

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

"Positive Lasso"

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
 The lasso around S² has an inverse:

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

• • = • • = •

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

Our first $S^1 \to \text{Emb}_{\partial}(I, M)$ is shown in blue:

伺 ト イヨト イヨト

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

Our first $S^1 \to \text{Emb}_{\partial}(I, M)$ is shown in blue:

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

Our first $S^1 \to \text{Emb}_{\partial}(I, M)$ is shown in blue:

Our second $S^1 \to \text{Emb}_{\partial}(I, M)$ is shown in red.:

 Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Because their lassos are disjoint, we can construct the map $S^1 \times S^1 \to \text{Emb}_{\partial}(I, M)$ by using each S^1 to partially define the embedding for part of the interval their lassos start from.

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Because their lassos are disjoint, we can construct the map $S^1 \times S^1 \to \text{Emb}_{\partial}(I, M)$ by using each S^1 to partially define the embedding for part of the interval their lassos start from.

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Because their lassos are disjoint, we can construct the map $S^1 \times S^1 \to \text{Emb}_{\partial}(I, M)$ by using each S^1 to partially define the embedding for part of the interval their lassos start from.
- Quotient out by a null homotopy of $S^1 \vee S^1 \to \text{Emb}_{\partial}(I, M)$

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Because their lassos are disjoint, we can construct the map $S^1 \times S^1 \to \text{Emb}_{\partial}(I, M)$ by using each S^1 to partially define the embedding for part of the interval their lassos start from.
- Quotient out by a null homotopy of $S^1 \vee S^1 \to \text{Emb}_{\partial}(I, M)$

- Find 2 loops in Emb_∂(I, M) that have disjoint lassos and are null-homotopic.
- Because their lassos are disjoint, we can construct the map $S^1 \times S^1 \to \text{Emb}_{\partial}(I, M)$ by using each S^1 to partially define the embedding for part of the interval their lassos start from.
- Quotient out by a null homotopy of $S^1 \vee S^1 \to \text{Emb}_{\partial}(I, M)$

We have thus constructed a map $S^2
ightarrow {
m Emb}_\partial(I,M)$

Configuration spaces

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces

æ

▲御▶ ▲ 陸▶ ▲ 陸▶

The n-point configuration space of a manifold M is

$$C_n(M) := \{(p_1, \cdots p_n) \in M^n | p_i \neq p_j \text{ for } i \neq j\}$$

The n-point configuration space of a manifold M is

$$C_n(M) := \{(p_1, \cdots p_n) \in M^n | p_i \neq p_j \text{ for } i \neq j\}$$

Examples:

- ₹ 🖬 🕨

The n-point configuration space of a manifold M is

$$C_n(M) := \{ (p_1, \cdots p_n) \in M^n | p_i \neq p_j \text{ for } i \neq j \}$$

Examples:

 $C_2(I)$ is the disjoint union of two partly closed 2-simplices.

The n-point configuration space of a manifold M is

$$C_n(M) := \{ (p_1, \cdots p_n) \in M^n | p_i \neq p_j \text{ for } i \neq j \}$$

Examples:

 $C_2(I)$ is the disjoint union of two partly closed 2-simplices.

 $C_n(I)$ is homoeomorphic to the (disjoint union of) n-simplex Δ^n
Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces

< E

Given an embedding $f : N \to M$, we can define an induced map $C_n(f) : C_n(N) \to C_n(M)$ because distinct points in N map to distinct points in M.

• • = • • = •

Given an embedding $f : N \to M$, we can define an induced map $C_n(f) : C_n(N) \to C_n(M)$ because distinct points in N map to distinct points in M.

We obtain a map $Emb_{\partial}(I, M) \longrightarrow Map^{sp}(C_n(I), C_n(M))$

• • = • • = •

Given an embedding $f : N \to M$, we can define an induced map $C_n(f) : C_n(N) \to C_n(M)$ because distinct points in N map to distinct points in M.

We obtain a map $Emb_{\partial}(I, M) \longrightarrow Map^{sp}(C_n(I), C_n(M))$

Main result

*ロト *部ト * ヨト * ヨト

æ

Gabai (2020) and Kosanovic (2021) completely determine the groups $\pi_1(\text{Emb}_\partial(I, M))$ and $\pi_1(\text{Emb}(S^1, M))$

伺 ト イヨト イヨト

Gabai (2020) and Kosanovic (2021) completely determine the groups $\pi_1(\text{Emb}_\partial(I, M))$ and $\pi_1(\text{Emb}(S^1, M))$

Budney and Gabai (2021) construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ and shows that they map nontrivially in $\pi_5(C_3(M))/\langle R \rangle$.

• • = = • • = =

Gabai (2020) and Kosanovic (2021) completely determine the groups $\pi_1(\text{Emb}_\partial(I, M))$ and $\pi_1(\text{Emb}(S^1, M))$

Budney and Gabai (2021) construct elements of $\pi_2(\text{Emb}_\partial(I, M))$ and shows that they map nontrivially in $\pi_5(C_3(M))/\langle R \rangle$.

Theorem (S.S.)

There exist nontrivial elements of $\pi_3(\text{Emb}_\partial(I, M))$, arising from a nontrivial map to $\pi_7(C_4(M))/\langle R \rangle$.

周 ト イ ヨ ト イ ヨ ト

References

- Budney–Gabai, "Knotted 3-balls in S⁴." arXiv:1912.09029
- Gabai, "Self-Referential Discs and the Light Bulb Lemma" arXiv:2006.15450
- Hatcher, "Topological moduli spaces of knots https://pi.math.cornell.edu/ hatcher/Papers/knotspaces.pdf
- Kosanovic, "On homotopy groups of spaces of embeddings of an arc or a circle: the Dax invariant" arXiv:2111.03041
- Kosanovic–Teichner, "A space level light bulb theorem in all dimensions." arXiv:2105.13032
- Sinha, "The topology of spaces of knots." arXiv:math/0202287
- Sridhar-Shapiro, "Higher homotopy groups of embedding spaces." (In preparation)

Thank You!

ヘロト ヘヨト ヘヨト