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Embedding spaces

Given 2 manifolds M, N, an embedding f : N → M is a smooth
immersion homeomorphic to its image.

Emb(N, M) will denote the space of embeddings from N to M.
(We use the compact open topology).

An isotopy between 2 embeddings is then a path in Emb(N, M).

Let M denote a compact 4-manifold with boundary.
The main embedding space in this talk will be:

Emb∂(I, M) := { embeddings f : I → M| end points of I are fixed in M}
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Homotopy groups of embedding spaces

Isotopy classes of knots are π0(Emb(S1, S3)).

π1(Emb(S1, S3)) can show certain symmetries of knots. (Hatcher
2002)

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces



Homotopy groups of embedding spaces

Isotopy classes of knots are π0(Emb(S1, S3)).

π1(Emb(S1, S3)) can show certain symmetries of knots. (Hatcher
2002)

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces



Homotopy groups of embedding spaces

Isotopy classes of knots are π0(Emb(S1, S3)).

π1(Emb(S1, S3)) can show certain symmetries of knots. (Hatcher
2002)

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces



Homotopy groups of embedding spaces

Isotopy classes of knots are π0(Emb(S1, S3)).

π1(Emb(S1, S3)) can show certain symmetries of knots. (Hatcher
2002)

Shruthi Sridhar Shapiro Homotopy Groups of Embedding Spaces



Homotopy groups of embedding spaces

Isotopy classes of knots are π0(Emb(S1, S3)).

π1(Emb(S1, S3)) can show certain symmetries of knots. (Hatcher
2002)

Embedded disks and (based) spheres in higher dimensional
manifolds can be seen as 1-parameter families or loops in
Emb∂(I, M) (Kosanovic–Teichner (2022))

Budney and Gabai (2021) construct ‘knotted balls’ in S1 × B3 by
viewing them as elements of π2(Emb∂(I, S1 × B3)).
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Lasso Operations in 4-manifolds

Embedded intervals lasso around
an embedded S2 in M:

Element of π1(Emb∂(I, M)):
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Higher homotopy groups of Emb∂(I , M)

We will construct elements of π2(Emb∂(I, M) as follows:

Find 2 loops in Emb∂(I, M) that have disjoint lassos and are
null-homotopic.
Construct a map S1 × S1 → Emb∂(I, M)
Quotient out by a null homotopy of S1 ∨ S1 → Emb∂(I, M)

S1 × S1/S1 ∨ S1 Emb∂(I, M)

S2
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Higher homotopy groups of Emb∂(I , M)

Find 2 loops in Emb∂(I, M) that have disjoint lassos and are
null-homotopic.

Our second S1 → Emb∂(I, M) is shown in red.:We have thus constructed a map S2 → Emb∂(I, M)
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Higher homotopy groups of Emb∂(I , M)

Find 2 loops in Emb∂(I, M) that have disjoint lassos and are
null-homotopic.

Because their lassos are disjoint, we can construct the map
S1 × S1 → Emb∂(I, M) by using each S1 to partially define
the embedding for part of the interval their lassos start from.

Our second S1 → Emb∂(I, M) is shown in red.:We have thus constructed a map S2 → Emb∂(I, M)
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Configuration spaces

Definition
The n-point configuration space of a manifold M is

Cn(M) := {(p1, · · · pn) ∈ Mn|pi ̸= pj for i ̸= j}

Examples:
C2(I) is the disjoint union of two partly closed 2-simplices.

Cn(I) is homoeomorphic to the (disjoint union of) n-simplex ∆n
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Cn(M) := {(p1, · · · pn) ∈ Mn|pi ̸= pj for i ̸= j}

Examples:
C2(I) is the disjoint union of two partly closed 2-simplices.

Cn(I) is homoeomorphic to the (disjoint union of) n-simplex ∆n
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From embedding spaces to configuration spaces

Given an embedding f : N → M, we can define an induced map
Cn(f ) : Cn(N) → Cn(M) because distinct points in N map to
distinct points in M.

We obtain a map Emb∂(I, M) −→ Mapsp(Cn(I), Cn(M))

πk(Emb∂(I, M)) πk(Mapsp(Cn(I), Cn(M)))

Mapsp(Ik × In, Cn(M))/ ∼

πn+k(Cn(M))/⟨R⟩

collapse boundary
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Main result

Gabai (2020) and Kosanovic (2021) completely determine the
groups π1(Emb∂(I, M)) and π1(Emb(S1, M))

Budney and Gabai (2021) construct elements of π2(Emb∂(I, M))
and shows that they map nontrivially in π5(C3(M))/⟨R⟩.

Theorem (S.S.)
There exist nontrivial elements of π3(Emb∂(I, M)), arising from a
nontrivial map to π7(C4(M))/⟨R⟩.
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