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Schur Functions

Example/Definition (Young Diagram & Semistandard Young Tableau)

Partition λ = (4, 3, 2)

Young Diagram

1 1 2 3
2 2 3
3 4

SSYT

Definition
The Schur function sλ of a partition λ is

sλ(x1, x2, x3, . . .) =
∑

T : SSYT
of shape λ

xT =
∑

T
x t1

1 x t2
2 x t3

3 · · ·

where ti is the number of occurrences of i in T .
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Skew Schur Functions

Example/Definition (Skew Shape)

λ = µ = λ/µ =

Skew Schur functions are:
defined analogously to straight Schur functions.
Schur-positive, meaning

sλ/µ =
∑
ν

cνλ,µsν

where ν is a straight partition, and cλµ,ν ≥ 0.
Definition
The Schur support of a skew shape λ/µ, denoted [λ/µ], is defined as

[λ/µ] = {ν : cλµ,ν > 0}.
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Ribbons

A ribbon is a skew shape which does not contain a 2× 2 subdiagram.

Example

Ribbon : Non-ribbon:

Given a sequence of integers, there’s a unique ribbon with that
sequence of row lengths. Thus, ribbons are uniquely determined by
compositions of n (the total boxes).

The above example can be denoted as the ribbon (3, 2, 3)
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Littlewood-Richardson Rule

This is a rule to check if a particular straight young diagram is
present in the support.

Formal Definition
Let D be a skew shape. A partition λ = (λ1, . . . , λm) is in the
support of sD iff there is a valid LR-filling of D with content λ.

A filling of D is an LR-filling if:
The tableau is semistandard.
Every initial reverse reading word is Yamanouchi :
#i ’s ≥ #(i + 1)’s

Example/Definition (Yamanouchi Property)

Reverse Reading Word: 1,1,1,2,2,3,2

This is Yamanouchi because there are at least
as many 1’s as 2’s and as many 2’s as 3’s at
every stage.

1 1
2 2 1

2 3
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Littlewood Richardson Rule

Example of LR-rule

Reverse Reading Word: 1,1,2,2,1,3,2

This is Yamanouchi and semistandard, hence is
a valid LR-filling

1 1
1 2 2

2 3

The content of the filling is (3,3,1), thus (3,3,1) is in the support of
the ribbon: (2, 3, 2).

Proposition
Let α = (1, α2, α3) be a ribbon. Then, α′ = (α2, 1, α3) and α don’t
have the same support.

Proof. When the row of length
1 is in the middle, there is no
LR-filling with just 1’s and 2’s.

1
1 2

1 2
α = (1, 2, 2)

1 1
2

∗ 3
α′ = (2, 1, 2)
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Ribbons with Equal Support

[McNamara (2008)] gives that 2 ribbons can have the same support
only if one is a permutation of the rows of the other.

Definition
Let α = (α1, α2, . . . , αm) be a ribbon. We use απ to denote a ribbon
formed by applying the permutation π ∈ Sm to the row lengths of α.

α = α(2 3) = α(1 2) =

α(1 3 2) = α(1 2 3) = α(1 3) =

Definition
A ribbon α = (α1, α2, . . . , αm) is said to have full equivalence class if
for any permutation π ∈ Sm, we have [α] = [απ].
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Trivial Cases

Proposition
If a ribbon α = (α1, α2, . . . , αm) has k rows of length 1, where
1 ≤ k < m, then α does not have full equivalence class.

Remark
It is well known that rotating a ribbon by 180◦ preserves its support.
It follows trivially that any ribbon with only two rows has full
equivalence class.

For the rest of the presentation, we consider only ribbons with more
than two rows and with no rows of length 1.
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Sufficient Condition for Full E.C

Theorem (S, G, H, Tran, ’17)
Let α = (α1, α2, . . . , αm) be a ribbon such that any subset of size
three of {αi} satisfies the strict triangle inequality (αi < αj + αk).
Then α has full equivalence class.

Proof Idea: Given a ribbon with an LR-filling, show how to swap
two adjacent row lengths while preserving the content, Yamanouchi
property, and semistandardness of the filling.

Proof Sketch:
1 Use the R-matrix algorithm (described on the next slide) to

swap adjacent row lengths while preserving content and the
Yamanouchi property.

2 Show how to adjust the resulting filling to be semistandard.
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R-Matrix Algorithm

Algorithm [Inoue et al. (2012), Section 2.2.3]

1 Represent the rows to be swapped as box-ball systems.

2 For each unconnected ball A on the right, find its partner B on
the left which is an unconnected ball in the lowest position but
higher than that of A; if there are no such balls, choose from the
balls in the lowest position on the left. Connect A and B.

3 Shift all unconnected balls from the left to the right.

R
(

⊗
)

= ⊗1 3 3 4 7 1 3 5 1 4 7 1 3 3 3 5
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R-Matrix Properties

In this example, notice that
1 the Yamanouchi property is preserved.
2 the leftmost entry in the bottom row does not increase.

1 3 3 4 7
1 3 5 −→

1 4 7
1 3 3 3 5

In fact, we prove that (1) and (2) hold in general. The remainder of
the proof of the theorem ensures that we can move around the
content within the ribbon so that the rightmost entry in the top row
does not violate semistandardness.
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Necessary Condition for Full E.C

Theorem (S, G, H, Tran, ’17)
Let α = (α1, α2, . . . , αm) be a ribbon, where α1 ≥ α2 ≥ · · · ≥ αm. If
α has full equivalence class, then Nj <

∑m
i=j+1 αi − (m − j − 2) for

all j ≤ m − 2, where
Nj = max{k|

∑
i≤j: αi<k

(k − αi ) ≤ m − j − 2}.

We prove the contrapositive by assuming

Nj ≥
m∑

i=j+1
αi − (m − j − 2)

and showing that there exists a content for an LR-filling of α(j j+1)
that is not the content of any LR-filling of α.
Conjecture
The above necessary condition is sufficient for a ribbon to have full
equivalence class.
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Other Results

Proposition: 3 rows
Let α = (α1, α2, α3) be a ribbon. Then α has full E.C iff α1, α2 and
α3 satisfy the strict triangle inequality.

Proposition: 4 rows
Let α = (α1, α2, α3, α4) be a ribbon such that α1 ≥ α2 ≥ α3 ≥ α4.
Then, α has full equivalence class iff

α1 < α2 + α3 + α4 − 2
α2 < α3 + α4
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