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1 Introduction

In 1770, Lagrange proved that any natural number n can be written as the sum of squares of 4

integers. In 1834, Jacobi proved the following remarkable result on the number of ways to write

a number as a sum of 4 squares.

Theorem 1.1. Let n ∈ N. Define rk(n) = #{(a1, a2, ..., ak) ∈ Zk |
∑
a2i = n}, the number of

ways to write n as the sum of k squares. Then, r4(n) =
∑

d|n,d 6∈4Z
8d

This expository paper begins with a short survey of modular forms over SL(2,Z) and its

congruence subgroups and uses these ideas to prove Jacobi’s four square theorem.

2 The action of SL(2,Z) on H

The upper half plane is defined as: H := {z ∈ C | Im(z) > 0}

Lemma 2.1. The group SL(2,R) acts on H via Fractional Linear Transformations (FLTs)

as follows. Let γ =

a b

c d

 ∈ SL(2,R). Then, γ(z) = az+b
cz+d for any z ∈ H.

Proof. We first check that FLTs take H to H.

Im(γ(z)) = Im
(az + b

cz + d

)
= Im

((az + b)(cz̄ + d)

|cz + d|2
)

= Im
(ac|z|2 + (ad+ bc)Re(z) + i(ad− bc)Im(z) + bd

|cz + d|2
)

=
Im(z)

|cz + d|2
> 0

Let γi =

ai bi

ci di

 ∈ SL(2,R). We have

γ1(γ2(z)) = γ1

(a2z + b2
c2z + d2

)
=

a1
a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1

=
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

= (γ1 · γ2)(z)
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Figure 1: Isometric Circles

Because FLTs are a group action, we have that they are invertible. In fact, when H is treated

as hyperbolic space with the metric ds =

√
x2+y2

y , the group of isometries is precisely PSL(2,R).

Now that we have defined an action by SL(2,R), this induces an action by any of its sub-

groups. We will be especially interested in the action by the discrete subgroup SL(2,Z).

A natural thing to look for is a fundamental domain for this action by SL(2,Z). The trans-

lation matrix

1 1

0 1

 that maps z 7→ z + 1 is an element of the group. Thus the fundamental

domain is inside the strip |Re(z)| ≤ 1
2 . Let γ =

a b

c d

 ∈ SL(2,Z). Let z = −d
c + reiθ.

Then γ(z) =
a(−dc + reiθ) + b

c(−dc + reiθ) + d
=
−ad+bc

c + raeiθ

creiθ
= 1

rc2
e−iθ + a

c . Thus, γ reflects z first across

the semicircle of radius 1
|c| centered at −dc and then reflects it about the line x = a−d

2c as shown

in Figure 1. We call the semi circles centered at −dc and a
c as the 1st and 2nd isometric circles.

The region outside the 2nd isometric circle gets mapped inside the 1st isometric circle by γ.

The region outside the 1st isometric circle gets mapped inside the 2nd isometric circle by γ−1.

So, the fundamental domain only needs one of these parts. We will choose to include the region

outside the isometric circles. Thus the region (Figure 2) above all possible isometric circles and

bounded in the strip will be a fundamental domain for the action by SL(2,Z). Precisely, the

fundamental domain is {z ∈ H
∣∣∣|Re(z)| ≤ 1

2 and |z| ≥ 1}

In fact, the matrices

1 1

0 1

 and

 0 1

−1 0

 generate SL(2,Z) and the highest isometric

circles come from the generators. This will be true for any subgroup of SL(2,Z) acting on H as

we will see later.

Before we move to defining modular forms, we will introduce the notion of cusps. When

SL(2,Z) acts on H, it induces an action on H ∪ Q ∪ {∞}. (We will say γ takes ∞ to a
c ). For

any p/q ∈ Q, the matrix

p 0

q −p

 SL(2,Z) that takes p/q 7→ ∞ and ∞ 7→ p/q. However, this
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Figure 2: Fundamental domain for SL(2,Z) acting on H

may not be the case if we restrict the action to any subgroup Γ of SL(2,Z). When we study

actions by subgroups of SL(2,Z), we will be interested in the orbits of Q∪∞ when acted on by

Γ. These orbits are called cusps.

3 Modular forms over SL(2,Z)

Modular forms are special holomorphic functions on H that satisfy some invariance under com-

position with FLTs.

Definition 3.1. Let k be any integer. A holomorphic function f : H→ C is a modular form

of weight k over SL(2,Z) if

• f
(
az+b
cz+d

)
= (cz + d)kf(z) for all

a b

c d

 ∈ SL(2,Z).

• f is holomorphic at ∞.

We will make this notion of holomorphic at ∞ precise. We have f(z+ 1) = (1)kf(z) = f(z).

Hence f(z) = g(e2πiz) for some holomorphic g : D \ {0} → C. Thus g(q) has a laurent series

g(q) =
∞∑

n=−∞
anq

n where q = e2πiz.

We say f is holomorphic at ∞ if an = 0 for all n < 0.

Example 3.2. Consider the functions Gk(z) =
∑

(m,n)∈Z2\(0,0)

1
(mz+n)k

for k ≥ 3. They will be

modular forms of weight k.

SL(2,Z) is generated by matrices S =

1 1

0 1

 , T =

0 −1

1 0

, hence it is sufficient to check

condition (1) for these matrices.
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Clearly Gk(z + 1) = Gk(z). Also, Gk

(
−1
z

)
=

∑
(m,n)∈Z2\(0,0)

1
(m−1

z
+n)k

=
∑

(m,n)∈Z2\(0,0)

zk

(nz+m)k
=

zkGk(z)

It can be shown that Gk(z) is holomorphic at infinity by showing it is bounded by the value at

ω = e2πi/3. This is because, for z in the fundamental domain, |mz+n|2 = m2zẑ+mnRe(z)+n2 ≥

m2 +mn(−1/2) + n2 = |mω + n|2. Moreover,

Gk(∞) = lim
z→∞

∑
(m,n)∈Z2\(0,0)

1

(mz + n)k
=
∑
n∈Z\0

1

nk
= 2ζ(k)

We will see another way to define even weight modular forms as holomorphic differential

forms on the space of orbits of the action. This is why the word form in the name shows up.

Definition 3.3. Let k be any integer. A holomorphic function f : H→ C is a modular form

of weight 2k if

• f(z)(dz)k = f(γ(z))(dγ(z))k for all γ ∈ SL(2,Z). (f(z)(dz)k is seen as a k form on H)

• f is holomorphic at ∞.

This tells us that we can see modular forms as holomorphic differential forms f(z)(dz)k

on the space H/SL(2,Z). For instance, modular forms of weight 2 will be differential 1-forms

f(z)dz on the fundamental domain with appropriate identifications. This differential form is

allowed to have a simple pole at ∞: Substituting q = e2πiz, we get f(z)dz = g(q) dq
2πiq which has

a simple pole at q = 0.

This definition is compatible with the earlier definition as follows. We have d
(
az+b
cz+d

)
=

1
(cz+d)2

dz. Therefore, f(gz) = (cz+ d)kf(z) if and only if f(gz)d(gz)k = (cz+ d)2kf(z)d(gz)k =

(cz + d)2kf(z)(cz + d)−2k(dz)k = f(z)(dz)k. Similarly, this invariance precisely implies f trans-

forms as in the definition of modular form by the same computation. So, f(z)(dz)k is SL(2,Z)

invariant if and only if f(z) is a modular form of weight 2k.

4 Principle subgroups of SL(2,Z)

We will be interested in modular forms over certain special subgroups of SL(2,Z) called con-

gruence subgroups.

Definition 4.1. The principle congruence subgroup of level N is defined as:

Γ(N) =

{a b

c d

 ∈ SL(2,Z)

∣∣∣∣∣
a b

c d

 ≡
1 0

0 1

 mod N

}
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A congruence subgroup Γ of level N is any subgroup of SL(2,Z) such that Γ(N) ⊂ Γ ⊂ SL(2,Z).

Example 4.2. Γ0(N) =

{a b

c d

 ∈ SL(2,Z)

∣∣∣∣∣
a b

c d

 ≡
∗ ∗

0 ∗

 mod N

}

We have a more general definition of modular forms over congruence subgroups of SL(2,Z)

Let γ =

a b

c d

 ∈ SL(2,Z) and f : H→ C holomorphic.

Define f [γ]k(z) = j(γ, z)−kf(γ(z)) where j(γ, z) = cz + d and γ(z) = az+b
cz+d

Definition 4.3. Let k be any integer and Γ be a congruence subgroup. A holomorphic function

f : H→ C is a modular form of weight k with respect to Γ if

• f [γ]k = f(z) for all γ ∈ Γ.

• f [γ]k is holomorphic at ∞ for all γ ∈ SL(2,Z).

The vector space of modular forms of weight k over Γ is denoted by Mk(Γ)

It is not hard to show j(γγ′, z) = j(γ, γ′(z))j(γ′, z) and f [γγ′]k = (f [γ′]k)[γ]k.This makes check-

ing the first condition for all γ ∈ Γ equivalent to checking it for a generating set of Γ.

The 2nd condition checks holomorphic at infinity for all γ ∈ SL(2,Z) to ensure that the function

is well behaved at all cusps, not just ∞.

As in the case of modular forms over SL(2,Z), we can view modular forms over congruence sub-

groups as differential k-forms on the space H/Γ. When we look at weight 2 forms, the differential

forms will be holomorphic on H/Γ with atmost simple poles at the cusps. The following section

will find provide a function that is a modular form of weight 2 over the congruence subgroup

Γ0(4)

5 Theta Functions

We would like to have a generating function for the number of ways to write a number as a sum

of k squares. One particular example of a theta function does the trick.

Define θ(z) =
∑
m∈Z

e2πizm
2

on H. This is a convergent series for z ∈ H because it is bounded by

2
∑
n≥0

e−2πIm(z)n = 2
1−e−2πIm(z) . We notice that

θ(z)k =
∑
n∈Z

( ∑
(a1,...ak)|

∑
a2
i
=n

1

)
e2πizn =

∑
n∈Z

rk(n)e2πizn
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Thus θ(z)4 =
∑
n∈Z

r4(n)e2πizn and this is the required generating function.

We will now show that θ4(z) is a modular form of weight 2 over the principle subgroup Γ0(4).

First we will find its generators.

Lemma 5.1. Γ0(4) is generated by ±

1 1

0 1

 ,±

1 0

4 1


Proof. Let γ =

a b

c d

 ∈ Γ0(4) with c 6= 0.

If c = 0, then a = d = ±1 and then γ would be generated by ±

1 1

0 1

.

Then,

a b

c d

1 1

0 1

n

=

a ∗

c nc+ d

. We can choose n such that |nc+d| < |c|/2 because c

is even. Also,

a b

c d

1 0

4 1

m

=

 ∗ b

c+ 4md d

, so we can choose m such that |c+ 4md| <

2d. At each step we can strictly reduce |c| or |d| until c = 0 at which step, the matrix is some

power of ±

1 1

0 1

.

We have θ(z) =
∑
m∈Z

e2πizm
2

=
∑
m∈Z

e2πim
2 · e2πim2

= θ(z + 1).

We will prove the identity θ(−14z ) =
√
−2iz θ(z) using the Poisson Summation Formula.

Lemma 5.2. Poisson Summation formula

For any Schwartz function f ,
∑

n∈Z f(n) =
∑

n∈Z f̂(n) where f̂(x) =
∫
R f(t)e−2πixtdt

Proof. Define F (x) =
∑
n∈Z

f(n + x). Clearly, F (x + 1) = F (x), so we can write F as a Fourier

series.

F (x) =
∑
k∈Z

(∫ 1

0

∑
n∈Z

f(x+ n)e−2πixkdx
)
e−2πikx

=
∑
k∈Z

(∑
n∈Z

∫ 1

0
f(x+ n)e−2πixkdx

)
e−2πikx Since f is Schwartz

=
∑
k∈Z

(∑
n∈Z

∫ n+1

n
f(x)e−2πixkdx

)
e−2πikx

=
∑
k∈Z

(∫ ∞
−∞

f(x)e−2πixkdx
)
e−2πikx

=
∑
k∈Z

f̂(k)e2πikx

7



Substituting x = 0 gives us the required result.

Choosing f(x) = e−πxt
2

(a Schwartz function), we get

f̂(n) =

∫ ∞
−∞

e−πtx
2−2πixndx = e

πn2

t

∫ ∞
−∞

e−πt(x−
ni
t
)2dx

= e
πn2

t

∫ ∞
−∞

e−πtxdx =
1√
t
e
πn2

t

Substituting z = −t
2i we get θ

(
−1
4z

)
=
∑
e
πn2

t =
√
t
∑
e−πtn

2
=
√
−2iz θ(z)

Then,
θ
( z

4z + 1

)
= θ
( −1

4( 1
4z − 1)

)
=
√

2i( 1
4z + 1)θ(−14z − 1)

=
√

2i( 1
4z + 1)θ(−14z )

=
√

2i( 1
4z + 1)

√
−2iz θ(z)

=
√

4z + 1 θ(z)

Thus θ4( z
4z+1) = (4z + 1)2θ4(z). Also, θ(z) is holomorphic at infinity because it has no Fourier

coefficients for negative exponents. Thus, θ4(z) is an element of M2(Γ0(4))

6 The space M2(Γ0(4))

We have shown that θ4(z) is an element of M2(Γ0(4)). So, it would be helpful to know more

about this space. In this section, we will find the dimension of the space and find a basis. This

will allow us to write θ4(z) as a linear combination of basis elements.

6.1 Dimension of M2(Γ0(4))

Lemma 6.1. dimM2(Γ0(4)) = 2

Proof. As seen in section 3, one may look at modular forms of weight 2k over Γ as differential

k-forms on the space H/Γ. Thus, M2(Γ0(4)) is the space of 1-forms on H/Γ0(4) with at most

simple poles at the cusps. We will find a fundamental domain for the action of Γ0(4) on H.

Since the translation matrix:

1 1

0 1

 is in the subgroup, the fundamental domain is contained

in {|Re(z)| ≤ 1
2}. For each matrix

a b

c d

 ∈ Γ0(4), we draw semicircles centered at a
c with
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Figure 4: The space H/Γ0(4)

radius 1
|c| . As seen before, a fundamental domain can be obtained by taking the region above

the highest semicircles. The highest semicircles will have radius 1/4 because c = 4N for some

N . We find that the only matrices that contribute semicircles within the strip of width 1 are1 0

4 1

 and its inverse

 1 0

−4 1

. The fundamental domain is shown in Figure [3] as the

shaded region. With the proper identifications, the fundamental domain becomes a sphere with

3 punctures (at 0, 1, and ∞) as shown in Figure [4].

The 1-forms on this thrice punctured sphere are allowed to have simple poles at each of the

punctures. Thus the space of 1-forms is generated by 2 elements: dz
z and dz

z−1 . The 1-form

adzz + b dz
z−1 has simple poles at 0 and 1. It also has a simple pole at infinity:

Set ξ = 1
z . dξ = −1

z2
dz. So the 1-form becomes: −adξξ − b

dξ
ξ(1−ξ) which has a simple pole at ξ = 0

Thus dimM2(Γ0(4)) = 2.

The next subsection finds elements of this space.
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6.2 G2(z): almost an invariant of SL(2,Z)

We want a candidate for a modular form of weight 2, however, the space of modular forms of

weight 2 over SL(2,Z) was 0. We know that Gk is a modular form of weight k for k > 2, however

G2 did not converge absolutely. To fix this, we will write G2 in a certain way that will make it

conditionally convergent.

Write G2(z) =
∑
c∈Z

∑
d∈Zc

1
(cz+d)2

where Zc = Z \ 0 if c = 0 and Z otherwise. We will show this is

conditionally convergent using the following identities.

πcotπz = 1
z +

∞∑
n=1

1
z−n + 1

z+n .... (1)

This is true because πcot(πz) has simple poles at every integer and has residue 1 at all poles.

Our second identity is:

πcotπz = π
cosπz

sinπz
= πi

eiπz + e−iπz

eiπz − e−iπz
= −πi− 2πi

∞∑
n=0

e2πinz ...(2)

Differentiating πcot(πz) in the first and second identity, we get
∞∑

n=−∞

1
(z+n)2

= −4π2
∞∑
n=0

ne2πinz.

G2(z) =
∑
c∈Z

∑
d∈Zc

1

(cz + d)2

=
∑
d 6=0

1

d2
+
∑
c>0

∑
d∈Z

1

(cz + d)2
+
∑
c<0

∑
d∈Z

1

(cz + d)2

= 2ζ(2) + 2
∑
c>0

∑
d∈Z

1

(cz + d)2

= 2ζ(2) + 2
∑
c>0

−4π2
∞∑
d=0

de2πidcz

=
π2

3
− 8π2

∞∑
n=1

σ(n)e2πinz where σ(n) =
∑
d|n

d

We have
∣∣∣ ∑
c>0

∞∑
d=0

de2πidcz
∣∣∣ ≤ C

∞∑
c>0

1
|(1−e2πizc)2| ≤ C ′

∞∑
c>0
|e−4πicz| = C′′

1−|e−4πiz | which makes the

series absolutely convergent. Thus we have written G2(z) as an absolutely convergent series. It

is also useful to note that the Fourier coefficients have the term
∑
d|n

8d which shows up in the

formula in Jacobi’s four square theorem.

This definition of G2(z) makes it almost invariant of SL(2,Z). It is clear that

G2(z + 1) = 2ζ(2)− 8π2
∑
m>0

∞∑
n=0

ne2πinm(z+1) = 2ζ(2)− 8π2
∑
m>0

∞∑
n=0

ne2πinmz = G2(z)

.
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Lemma 6.2. G2

[(
0 −1
1 0

)]
2

(z) = G2(z)− 2πi
z

Proof. First note that

G2

[(
0 −1
1 0

)]
2

(z) = z−2G2(
−1

z
)

= z−2
∑
c∈Z

∑
d∈Zc

1

(−c/z + d)2

=
∑
c∈Z

∑
d∈Zc

1

(−c+ dz)2

=
∑
d∈Z

∑
c∈Zd

1

(cz − d)2

=
∑
d∈Z

∑
c∈Zd

1

(cz + d)2

=
∑
d6=0

1

d2
+
∑
d∈Z

∑
c 6=0

1

(cz + d)2

Next, observe that using the telescopic series∑
d∈Z

1

(cz + d)(cz + d+ 1)
= 0

We have that

G2(z) =
π2

3
+
∑
c6=0

∑
d∈Z

1

(cz + d)2
−
∑
c 6=0

∑
d∈Z

1

(cz + d)(cz + d+ 1)

=
π2

3
+
∑
c6=0

∑
d∈Z

1

(cz + d)2(cz + d+ 1)

This double sum is on the order of
∑

d,c
1

(cz+d)3
, and therefore converges absolutely. Rearranging

the terms, we have

G2(z) =
π2

3
+
∑
d∈Z

∑
c 6=0

1

(cz + d)2
− 1

(cz + d)(cz + d+ 1)
= z−2G2(

−1

z
)−

∑
d∈Z

∑
c 6=0

1

(cz + d)(cz + d+ 1)

Hence, to finish proving the claim, it suffices to show that

− lim
N→∞

N−1∑
d=−N

∑
c 6=0

1

(cz + d)(cz + d+ 1)
= 2πi/z

Note that for N fixed, this sum converges absolutely. So reversing the orders of the summations

gives us,

−
N−1∑
d=−N

∑
c 6=0

1

(cz + d)(cz + d+ 1)
= −

∑
c 6=0

1

cz −N
+
∑
c 6=0

1

cz +N
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Recall the cotangent identity:

πcot(πz) =
1

z
+
∞∑
n=1

(
1

z − n
+

1

z + n

)
Therefore,

−
∑
c 6=0

1

cz −N
+
∑
c 6=0

1

cz +N
=
∑
c 6=0

1/z

N/z − c
+

1/z

N/z + c
= (1/z)2πcot(πN/z)− 2z

N

Finally using the above,

− lim
N→∞

N−1∑
d=−N

∑
c 6=0

1

(cz + d)(cz + d+ 1)
= lim

N→∞

2πcot(πN/z)

z
=

2π

z
lim
N→∞

i
e2πiN/z + 1

e2πiN/z − 1
= 2πi/z

Lemma 6.3. (G2[γ]2)(z) = G2(γ)− 2πic
cz+d with γ =

a b

c d

 ∈ SL2(Z).

Proof. We have shown the lemma holds for the generators of SL(2,Z). If we can show the

lemma holds under multiplication and inversion, then we are done.

The inverse of

 0 1

−1 0

 is the negative of itself, and the inverse of the translation matrix is

another translation matrix, so the lemma holds for inverses.

Write γ =

a b

c d

 and η =

e f

g h

. Using the general fact proven earlier that f [γ]2[η]2 =

f [γ.η]2, we would like to show that f [γ.η]2(z) = f(z)− 2πi(ce+dg)
(ce+dg)z+cf+dh . Indeed we have,

f [γ]2[η]2(z) = (f(z)− 2πic

cz + d
)[η]2

= f(z)− 2πig

gz + h
− (gz + h)−2

2πic

c ez+fgz+h + d

= f(z)− 2πic− 2πig(c(ez + f) + d(gz + h))

(gz + h)(c(ez + f) + d(gz + h))

Therefore to show multiplicativity, we need

2πic+ 2πig(c(ez + f) + d(gz + h))

(gz + h)(c(ez + f) + d(gz + h))
=

2πi(ce+ dg)

(ce+ dg)z + cf + dh)

Clearing the denominator, we only need to show that

2πic+ 2πig(c(ez + f) + d(gz + h)) = 2πi(ce+ dg)(gz + h)
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After expanding and cancelling terms we have that it suffices to show

2πi(c+ gcf) = 2πiceh

which holds because η has determinant 1.

6.3 A basis for M2(Γ0(4))

We noticed that G2 is almost invariant of SL(2,Z) and we exploit that to define a function

that is invariant of Γ0(N). Define G2,N = G2(z)−NG2(Nz). We will show that this is weakly

modular over Γ0(N)

Let γ =

 a b

Nc d

 and γ′ =

a Nb

c d

. Thus Nγ(z) = γ′(Nz)

G2,N [γ]2(z) = (Ncz + d)−2(G2(γ(z))−NG2(Nγ(z)))

= G2(z)−
2πiNc

Ncz + d
− (c(Nz) + d)−2(NG2(Nγ(z)))

= G2(z)−
2πiNc

Ncz + d
− (c(Nz) + d)−2(NG2(γ

′(Nz)))

= G2(z)−
2πiNc

Ncz + d
−
(
N

(
G2(Nz)−

2πic

c(Nz) + d

))
= G2(z)−NG2(Nz)

Thus G2,N is weakly modular over Γ0(N). Specifically G2,4 is weakly modular over Γ0(4) and

G2,2 is weakly modular over Γ0(2). However, Γ0(2) ⊇ Γ0(4), so G2,2 is weakly modular over Γ0(4)

as well. If we can show G2,4 and G2,2 satisfy the second condition for a modular form (f [γ]k

being holomorphic at ∞), we will have a basis for the 2 dimensional vector space M2(Γ0(4)).

We know that G2,2 and G2,4 are holomorphic at ∞ by looking at their Fourier expansion,

but we also need G2,N [γ]2 to be holomorphic at ∞ for any γ ∈ SL(2,Z). The following theorem

gives us a way to prove that as long as the Fourier coefficients are bounded by a polynomial.

Theorem 6.4. Let f : H → C be weakly modular with respect to Γ, a congruence subgroup

of level N . If there exist positive constants C, r, such that the Fourier expansion of f satisfies

f(z) =
∑

n≥0 ane
2πinz/N with an ≤ Cnr for all n > 0, then

|f(z)| ≤ C0 + C

(∫ ∞
0

tre−2πty/Ndt

)
+
C1

yr

Furthermore if a weakly modular function satisfies the above condition of Fourier coefficients, it

is a modular form with respect to Γ.
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Proof. We have |f(z)| ≤ |a0|+
∑

n>0Cn
re−2πiny/N .

Consider the function g(t) = tre−2πty/N . g′(t) > 0 when t ∈ (0, rN2πy ) and g′(t) < 0 when t > rN
2πy

Calling k =

⌊
rN
2πy

⌋
, we get

k−1∑
1
nre−2πiny <

k∫
0

tre−2πty/Ndt

and
∞∑
k+2

nre−2πiny <
∞∫
k

tre−2πty/Ndt

Thus, |f(z)| ≤ |a0|+ C

(
kre−2πky/N + (k + 1)re−2π(k+1)y/N +

k−1∑
1

nre−2πiny +

∞∑
k+2

nre−2πiny

)

≤ C0 +
C1

yr
+ C

( ∞∫
0

tre−2πty/Ndt

)

because e−2πky/N ≈ e−r and kr ≈ ( rN2πy )r

For all γ ∈ SL(2,Z), we need f [γ]k to be holomorphic at ∞. f [γ]k is invariant under γ−1Γγ

and hence has a Laurent expansion: f [γ]k(Z) =
∑

n∈Z bne
2πinz/N .

We have C
( ∞∫

0

tre−2πty/Ndt
)

= C
yr+1

( ∞∫
0

tre−2πt/Ndt
)

= C2
yr+1

As Im(z)→∞, |f [γ]k(z)| = |(cz + d)−kf(γ(z))|

≤
∣∣(cz + d)−k

(
C0 + C1

(Im(γ(z))r + C2
(Im(γ(z))r+1

)∣∣
=
∣∣(cz + d)−k

(
C0 + C1(cz+d)2r

(Im(z))r + C2(cz+d)2r+2

(Im(z))r+1

)∣∣
= O(yr+1−k) since we can assume r > 0

Thus, lim
z→∞

|f [γ]k(z)e
2πiz/N | = lim

y→∞
O(yr+1−k)e−2πy/N = 0. This guarantees that bn = 0 for all

n < 0 giving us that f [γ]k is holomorphic at infinity.

Now, we look at the fourier expansion of G2,2, G2,4.

G2,2(z) = G2 − 2G2(2z)

= 2ζ(2)− 8π2
∞∑
n=1

σ(n)e2πizn − 2
(

2ζ(2)− 8π2
∞∑
n=1

σ(n)e4πizn
)

= −π
2

3
− 8π2

∞∑
n=1

( ∑
d|n,d/∈2Z

d

)
e2πizn

Similarly, G2,4(z) = −π2 − 8π2
∞∑
n=1

( ∑
d|n,d/∈4Z

d

)
e2πizn.

The fourier coefficients are bounded by 8π2σ(n) ≤ 8π2n2 and we can apply the theorem. Hence,

G2,2, G2,4 ∈M2(Γ0(4)) and are a basis.
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7 The formula for the sum of four squares

Now that we know the space M2(Γ0(4)) has dimension 2 and a basis for the space is G2,2 and

G2,4, we should be able to write θ4(z) as a linear combination of these two functions. We have

θ4(z) = aG2,2 + bG2,4

=⇒ 1 + 8e2πiz + ... =
−aπ2

3
(1 + 24e2πiz + ...)− bπ2(1 + 8e2πiz + ...)

Comparing the constant term and thecoefficients of the e2πiz term, we get, a = 0 and b = −1
π2

giving us θ4(z) = −1
π2G2,4 =

∑
n∈Z

(
8

∑
d|n,d/∈4Z

d
)
e2πizn. Thus we have proved r4(n) = 8

∑
d|n,d/∈4Z

d
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