
Arithmetic Kleinian groups

Shruthi Sridhar

May 2017

Contents

1 Introduction 2

2 Preliminaries 2

2.1 Number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Commensurable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Trace fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Arithmetic groups 4

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Questions 5

4.1 Arithmetic knots and links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Volumes of Arithmetic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



1 Introduction

Kleinian groups are discrete subgroups of PSL(2,C). It’s well known that the isomorphism

classes of Kleinian groups Γ that don’t contain elliptics are in one to one correspondence with

hyperbolic 3-manifolds given by H3/Γ. We are interested in those groups that have finite covol-

ume: (i.e.) H3/Γ has finite volume, and arithmetic Kleinian groups are an important family of

finite covolume Kleinian groups.

Arithmetic Kleinian groups come from quaternion algebras as we will see in Section 3 and

the necessary preliminaries are developed in Section 2.

While arithmetic Kleinian groups have interesting properties on their own, one can ask about

the 3-manifold they produce. One would hope that the extra arithmetic structure makes it easier

to study arithmetic 3-manifolds, and we look at some interesting questions in Section 4. The

first is about arithmetic Kleinian groups that produce knot or link complements. The second is

whether volumes of arithmetic Kleinian groups satisfies any nice properties.

Note: Most of the above material is obtained from [2], but a more condensed version of the

next 2 sections can be found at [1].

2 Preliminaries

This section will develop necessary preliminaries about number fields, quaternion algebras, trace

fields and commensurable groups.

2.1 Number fields

Let k be a field extension of Q of degree n. There exists an element t ∈ k such that its minimal

polynomial in Q[x] has degree n. Let t1, t2, . . . tn be the roots of this polynomial. Each ti

induces an embedding σi of k into C induced by σi(t) = ti. σi is called a real place if σi(k) ⊂ R.

Otherwise, these embeddings come in conjugate pairs, and each such pair is called a complex

place. Clearly n = r1 + 2r2 where r1 is the number of real places and r2, the number of complex

places.

2.2 Quaternion algebras

A quaternion algebra A over a field k of char 6= 2, is a 4 dimentional vector space over k with

basis 1, i, j, k such that 1 is a multiplicative identity, i2 = a1, j2 = b1 and ij = −ji = k for some
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a, b ∈ k×. We will write a as
(
a,b
k

)
.

Example 2.1. The usual Hamiltonian quaternions H =
(
−1,−1
k

)
.

Another example is M2(k) =
(

1,1
k

)
where i =

(
1 0
0 −1

)
and j = ( 0 1

1 0 )

Some easy properties to check are

•
(
a,b
k

)
∼=
(
ax2,by2

k

)
for any a, b, x, y ∈ k×.

• For any field extension L of k, we have
(
a,b
k

)
⊗k L ∼=

(
a,b
L

)
• For any embedding σ : k → L, we have

(
a,b
k

)
⊗σ(k) L ∼=

(
σ(a),σ(b)

L

)
Over the complex numbers, every element is a square, and thus by the first property, every

quaternion algebra is equivalent to M2(C). On the other hand, quaternion algebras over the

reals can either be M2(R) or H.

Definition 2.2. Let k be a field extension of Q of degree n. A quaternion algebra A over k is

said to be ramified at a real place σ : k → C if A⊗σ R ∼= H, and unramified otherwise.

Definition 2.3. Let A be a quaternion algebra over a number field k and let R be the ring of

integers in k. An order O ⊂ A is an R-lattice in A that contains 1.

We can define norms and traces for quaternion algebras as follows: Let A0 ⊂ A be the ”pure

quaternions” (those spanned by i, j, k). Any x ∈ A can be uniquely written as a1+α with a ∈ k

and α ∈ A0. Define the conjugate of x as: x = a1− α. Then, the norm of x is: n(x) = xx and

the trace tr(x) = x+ x. Later, we will be interested in elements of an order of A with norm 1.

2.3 Commensurable groups

Definition 2.4. 2 groups Γ and Γ′ are said to be commensurable if there are subgroups ∆ ⊆

Γ,∆′ ⊆ Γ′ such that Γ/∆ and Γ′/∆′ are finite index and ∆ ∼= ∆′.

In some situations, like in the case of Kleinian groups, we can pick ∆ = ∆′ = Γ ∩ Γ′

and redefine commensurability to mean that Γ ∩ Γ′ is finite index in each of the groups. Two

hyperbolic manifolds H3/Γ and H3/Γ′ are said to be commensurable if they have diffeomorphic

finite coverings. This is equivalent to Γ being commensurable to some conjugate of Γ′. Studying

commensurability classes of Kleinian groups could tell us more about hyperbolic 3-manifolds. For

instance, Γ and Γ′ are commensurable finite covolume Kleinian groups, then, Vol(H3/Γ′)
Vol(H3/Γ)

= [Γ/Γ∩Γ′]
[Γ′:Γ∩Γ′]
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2.4 Trace fields

Given a Kleinian group Γ with finite covolume, we define its trace field: Q(trΓ) as the field

obtained by adjoining the traces of elements in Γ with Q. This will be a finite extension of Q.

However, it is not a commensurability class invariant.

Define Γ(2) = {γ2|γ ∈ Γ}. Denote the trace field of Γ(2) as kΓ. Remarkably, this is a

commensurability class invariant of Γ.

3 Arithmetic groups

3.1 Definition

Definition 3.1. Let k be a number field with exactly 1 complex place and let A be a quaternion

algebra over k which is ramified at all real places. Let ρ be a k-embedding of A into M2(C) and

let O be an order of A. Then a subgroup Γ of PSL2(C) is an arithmetic Kleinian group if it is

commensurable with some Pρ(O1) where O1 are the elements of O of norm 1.

Remark 3.2. The field k and the algebra A in the definition are not so mysterious. In fact

k = kΓ, the invariant trace field, and ρ(A) = AΓ = {
∑
aiγi|ai ∈ kΓ, γi ∈ Γ(2)}, the invariant

quaternion algebra.

3.2 Examples

Bianchi Groups are an important class of examples. They are the groups: PSL(2,Od) where

Od = Z[
√
−d]. We notice that k = kΓ = Q(

√
−d) which has only 1 complex place and no real

places, so A = M2(k) is vacuously ramified at all real places. We have O = M2(k) is an order of

A, ρ is the identity and Pρ(O1) is precisely PSL(2,Od).

From definition 3.1 of Arithmetic groups, it is clear that if a Kleinian group is commensurable to

an arithmetic kleinian group, it is arithmetic as well. The following is an important classification

theorem of commensurability classes of arithmetic kleinian groups:

Theorem 3.3. Any non co-compact arithmetic Kleinian group is commensurable to a Bianchi

group.

In [5], Riley showed that that the fundamental group of the figure-8 knot is commensurable

with PSL(2,O3) and hence arithmetic. The knot group for the figure-8 is {x, y | wx = yw,w =

x−1yxy−1}. We can obtain a representation of this group in PSL2(C) by x 7→ ( 1 1
0 1 ) and
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y 7→
(

1 0
−w 1

)
where w = −1+

√
−3

2 . One needs to check this is a homomorphism (which is not

so easy) and then shows that the subgroup generated by these two matrices is finite index in

PSL(2,O3)

Remark 3.4. The meridian x and the longitude y both map to parabolics. As we will see in the

following section, such representations play an important role in identifying arithmetic knots.

4 Questions

4.1 Arithmetic knots and links

Question. What knots or links are arithmetic? (i.e.) for what arithmetic kleinian groups Γ is

H3/Γ a knot or link complement?

In 1979, Riley in [5] showed that several link complements are arithmetic, and constructed

infinite families of arithmetic links. Some examples are the two bridge link (10/3), the Whitehead

link, and the Borromean rings. An infinite family can be obtained by taking branched cyclic

covers over an unknotted component of the Borromean rings (From Chapter 9 in [2]).

We know that the figure-8 knot is arithmetic (see section 3.2). However no other such knots

were found. In 1991, Reid proved in [3], that the only arithmetic knot was the figure 8. The

following paragraphs outline some key ideas to his proof.

The first is the observation that the knot group of the figure-8 knot is commensurable with

PSL(2,O3). Furthermore, its knot group has an ”excellent” representation in PSL(2,O3). Al-

though this has a technical definition, one can understand it as the meridian in the fundamental

group mapping to a parabolic element in PSL(2,O3). We know that any arithmetic knot group

will be commensurable to some Bianchi group by Theorem 3.3. Reid further proves that all

arithmetic knots should have excellent representation in some PSL(2,Od) by looking at the

trace field and using the proposition: a non-cocompact Kleinian group Γ of finite covolume is

derived from a quaternion algebra if and only if trΓ ⊂ Od for some d.

The second idea is the following connection between the class number hd of PSL(2,Od)

and the number of cusps of H3/PSL(2,Od). It turns out that hd simply counts the counts the

conjugacy classes of maximal parabolic subgroups, which is precisely the number of cusps. Thus,

if a knot group has excellent representation in PSL(2,Od) then, hd = 1 because a knot has only

1 cusp. A little more work limits the search to d = 1, 2, 3, 7, 11, 19.

Then it is a matter of careful elimination to show that for d = 1, 2, 7, 9, 11, any arithmetic

group Γ will have elliptic elements. Once d = 3, one can show it has to be the figure 8.
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4.2 Volumes of Arithmetic manifolds

The following is a theorem of Borel (Theorem 11.1.3 in [2]):

Theorem 4.1. Let k be a number field with exactly one complex place, A be a quaternion algebra

over k ramified at all real places and O be a maximal order in A. Then if ρ is a k-embedding of

A to M2(C) then,

Volume(H3/Pρ(O1)) =
4π2|∆k|3/2ζk(2)

∏
P|∆(A)(N(P)− 1)

(4π2)[k:Q]

where ∆k is the discriminant of the field k (or of the polynomial that determines k), ∆(A) is the

discriminant of A, ζk is the Dedekind zeta function of k, N(P) is the norm of the prime ideal

P.

The formula guarantees that there only finitely many arithmetic 3-manifolds below any

volume threshold (Theorem 11.2.1 in [2]) and hence there should be a minimum volume manifold.

The Weeks manifold is the smallest volume arithmetic 3-manifold, whereas the figure 8 knot

has the least volume among orientable cusped manifolds. These were also conjectured to be

the minimal volume hyperbolic manifolds (that are not necessarily arithmetic) and in 2008, the

work of Gabai, Meyerhoff, and Milley showed that this was indeed the case [6].
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