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1 Introduction.

In this paper we give an expository account of an invariant for 3-manifolds called Heegaard Floer homol-
ogy, introduced by Peter Ozsváth and Zoltán Szabó in [7] and [6]. Heegaard Floer homology is related
to other Floer homology invariants for 3-manifolds; in particular, it is conjectured to be equivalent to
Seiberg-Witten monopole Floer homology [6]. It also has strong ties with knot theory. In fact, we will
discuss a related invariant called knot Floer homology. This invariant was introduced independently in
[13] and [5]. It is defined for general null-homologous knots in 3-manifolds, although in this paper we
will restrict attention to knots in S3.

In Section 2.1 through Section 2.4, we give the definition of Heegaard Floer homology and discuss
some properties which will be relevant in later sections. In Section 2.5, we define knot Floer homology
and state some of its properties. Finally, in Section 2.6, we discuss holomorphic triangles, cobordisms,
and induced maps on Heegaard Floer homology.

One important property of Heegaard Floer homology is that one can compute it for sufficiently large
knot surgeries using knot Floer homology. In Section 3.1, we state some general theorems along these
lines. We then focus on the corresponding calculations in knot Floer homology. From Section 3.2 to
Section 3.4, we outline an approach to computing the knot Floer chain complex for a general knot in S3,
based on techniques using Fox calculus which were introduced in [13]. We then consider three specific
examples in Section 3.5. Finally, we prove the general theorems relating knot Floer homology to large
surgeries in Section 3.6.

In the third major section of the paper, Section 4, we apply the surgery exact triangle in Heegaard
Floer homology to prove a result of Gordon and Luecke [2] that knots are determined by their comple-
ments. After outlining the proof in Section 4.1, we state the exact triangle in Section 4.3 and prove it in
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Section 4.4. The rest of Section 4 carries out the proof of the result of Gordon and Luecke; in Section 4.7,
we take a detour to define Heegaard Floer homology with twisted coefficients.

Clearly, surgeries on knots in S3 will play an important role in much of what is to follow, so for con-
venience we fix the notation before beginning. Knots will always be oriented, unless otherwise specified.
If K is an oriented knot in S3 and nbK is a tubular neighborhood of K, then a meridian for K is an
embedded circle µ in ∂(nbK) which bounds a disk in nbK. Its homology class in H1(∂(nbK)) is unique
up to sign; we will use the term “meridian” to refer either to the circle or to its homology class [µ].

Any homology class λ in ∂(nbK) which has intersection ±1 with µ is called a longitude for K. Given
a longitude λ for K, the other possible longitudes for K are obtained from λ by adding integer multiples
of [µ], so they are indexed by Z. A knot equipped with a choice of longitude is called a framed knot,
and the longitude is sometimes called a framing. One can perform λ-framed surgery on K by removing
int(nbK) from S3, gluing on a two-handle along λ, and capping off the result with a 3-ball. The manifold
obtained by this process will be denoted Kλ.

Since K is a knot in S3, it has a canonical framing, the Seifert framing, defined as follows: choose a
Seifert surface F of K. Then, as long as nbK is small enough, F intersects ∂(nbK) in a circle, and this
circle defines a longitude λSeif of K. For knots in arbitrary three-manifolds, this definition might not
be independent of F , but for knots in S3 it is.

Now that K has a preferred longitude λSeif , we can index all longitudes for K by Z: let λ0 := λSeif
and let λp := λ0 + p[µ]. This definition depends on the sign we choose for the meridian; we want to
fix this choice in some way. To do so, consider the surgery KλSeif

(henceforth denoted K0). In this

manifold, we can cap off F to obtain a closed surface F̂ . Since K is oriented, F and hence F̂ inherit
orientations from K. We may also view [µ] as an element of H1(K0). To fix the sign of [µ], we require
that 〈PD[µ], [F̂ ]〉 = +1 rather than −1.

Now we may unambiguously refer to the longitudes λp for p ∈ Z. The surgery Kλp
will be denoted

simply by Kp, the p-surgery on S3 along K (or just the p-surgery, when K is implied).
The author would especially like to thank Jacob Rasmussen for his patience in explaining concepts

and answering questions during the writing of this paper.

2 Definitions of Heegaard Floer homology and knot Floer ho-

mology.

In this section we will define the Heegaard Floer homology of a three-manifold Y , denoted ĤF (Y ), as
well as the variants HF−(Y ), HF+(Y ), and HF∞(Y ). We will also define the knot Floer homology

ĤFK(S3,K) of a knot in S3. While in this paper we will only consider knots in S3, knot Floer
homology can be defined for a null-homologous knot in any closed three-manifold. We will give proofs
when appropriate, but many will be omitted for reasons of space. The exposition will roughly follow [9].

Unless otherwise specified, three-manifolds will always be taken to be closed and oriented, although
we will often mention these conditions explicitly as well to avoid confusion.

2.1 Heegaard decompositions and Heegaard diagrams.

To define the Heegaard Floer homology of a three-manifold Y , we start by choosing a suitable Heegaard
diagram for Y . Thus, we first need to discuss what this means.

2.1.1 Heegaard decompositions of three-manifolds.

Definition 2.1. Let Y be a closed oriented 3-manifold. A genus-g Heegaard decomposition of Y is an
identification of Y with a manifold of the form U1 ∪φ U2, where U1 and U2 are both handlebodies of a
common genus g. Here, φ : ∂U1 → ∂U2 is a homeomorphism of the genus-g surface Σg = ∂Hg specifying
how the two copies U1 and U2 of Hg are to be glued.

It is a basic fact that three-manifolds always admit Heegaard decompositions:

Proposition 2.2. Let Y be a closed oriented 3-manifold. Then Y has a Heegaard decomposition.

3



Proof. One way to obtain a Heegaard decomposition is by taking a handle decomposition of Y , i.e. by
writing Y = 0-handle ∪ 1-handle ∪ 2-handles ∪ 3-handle. Then the union of the 0-handle and the 1-
handles is a genus-g handlebody for some g; call the handlebody U1. Dually, the union of the 2-handles
and the 3-handle is also a handlebody U2 of genus g′ for some g′. However, since ∂(U1) = ∂(Y \ U1) =
∂(U2), we must have g = g′.

Another way to obtain a Heegaard decomposition of Y is by triangulating Y , fattening the vertices
and edges, and taking U1 to be the union of the fattened vertices and edges. It is clear that the closure
of the complement of U1 is again a handlebody, since it consists of the fattened barycentres of the 3-
simplices connected by handles corresponding to the barycentres of the 2-simplices. The same argument
as above shows that these two handlebodies must have the same genus.

2.1.2 Heegaard diagrams.

Let U1 ∪φ U2 be a Heegaard decomposition of a three-manifold Y . By introducing a redundancy in our
description of this decomposition, we obtain an easy way to visualize it. Namely, rather than viewing the
boundaries of U1 and U2 as glued together with a single homeomorphism, we will consider both ∂U1 and
∂U2 as glued to an abstract genus-g surface Σ. The redundancy is that we need two homeomorphisms
φ1 and φ2 in this picture, rather than just one.

The homeomorphisms φi : ∂Ui → Σ each specify a system of g circles in Σ, as follows. Let γ1, . . . , γg
be disjoint circles in ∂U1 representing those independent homology classes in ∂U1 which are zero (i.e.
bound disks) in U1. Then φ1(γ1), . . . , φg(γg) are disjoint circles in Σ representing independent homology
classes. Denote these circles by α1, . . . , αg. We have similar circles β1, . . . , βg coming from U2 and φ2.

Motivated by this discussion, we make the following definition:

Definition 2.3. Let Σ be a genus-g surface.

(a) A set of g circles α1, . . . , αg in Σ is called a system of attaching circles in Σ if the αi are
disjoint and determine independent homology classes in H1(Σ).

(b) (b) A genus-g Heegaard diagram is a triple (Σ,α,β) where Σ is an oriented surface of
genus g and α = (α1, . . . , αg), β = (β1, . . . , βg) are two systems of attaching circles in Σ.

The above discussion shows that given a Heegaard decomposition of a three-manifold, we can make
some choices and get a Heegaard diagram. Up until now, however, we have not made use of the given
orientation on Y , and we have not given any reason for choosing one orientation on Σ over the other.
As one might expect, we want these two things to be compatible. More precisely, we want to choose the
orientation on Σ such that the oriented three-manifold Y ′ associated to (Σ,α,β) (as defined below) is
equal to Y rather than Y .

Given an oriented surface Σ and two sets of attaching circles α = (α1, . . . , αg) and β = (β1, . . . , βg),
we want to construct an associated oriented 3-manifold. We can start with Σ× [0, 1], with its orientation
induced from Σ and the standard orientation on [0, 1]. View the α circles as living in Σ × {1} and the
β circles as living in Σ × {0}. Now attach a two-handle along each αi and βj. After adding all the
two-handles, we cap off the result with two three-handles. This procedure specifies a way of gluing two
handlebodies to Σ along its boundary to obtain a three-manifold Y . The orientation on Y is determined
by the orientation on the open set Σ× (1/3, 2/3), which was specified before any gluing was performed.
We say that (Σ,α,β) is a Heegaard diagram for Y or “represents” Y .

Remark 2.4. For future use, it will be important to note that if (Σ,α,β) represents Y , then (Σ,α,β)
and (Σ,β,α) both represent Y , whereas (Σ,β,α) represents Y .

Clearly, if we start with a three-manifold Y , pick a Heegaard diagram by taking a decomposition of Y
as described above, and then construct the three-manifold associated to the diagram by gluing 2-handles
along the attaching circles, we recover Y . Thus, we have (informally) proved the following proposition:

Proposition 2.5. Let Y be a closed oriented three-manifold. There exists a Heegaard diagram for Y (in
fact, there exist many).

It will sometimes be useful to have a Morse-theoretic approach to Heegaard diagrams. The following
proposition will summarize what we need:
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Proposition 2.6. Let Y be a closed oriented 3-manifold.

(a) There exists a self-indexing Morse function f on Y with unique critical points of index 0
and 3 and with g critical points each of index 1 and 2, for some positive integer g.

(b) If f is such a Morse function, then f determines a Heegaard diagram of Y as follows:
define the Heegaard surface Σ to be f−1(3/2), a surface of genus g. Label the index 1 critical
points of f as x1, . . . , xg and the index 2 critical points as y1, . . . , yg. For 1 ≤ i ≤ g, let αi
be the set of points in Σ which flow to xi under −∇f , and let βi be the set of points which
flow to yi under ∇f . Then (Σ,α,β) is a Heegaard diagram representing Y .

(c) Every Heegaard diagram for Y arises from a Morse function as in (b).

Remark 2.7. A Morse function f on Y as in Proposition 2.6 induces a handle decomposition of Y
and hence a Heegaard decomposition of Y via Proposition 2.2. This decomposition agrees with the
decomposition associated to the Heegaard diagram of Proposition 2.6(b); in both cases, U1 is f

−1([0, 3/2])
and U2 is f−1([3/2, 3]). The α curves are the belt spheres of the 1-handles, and the β curves are the
attaching spheres of the 2-handles. This fact will be relevant in Section 2.4.2.

2.2 Other preliminaries.

2.2.1 Symmetric products.

Given a three-manifold Y , we want to define its Heegaard Floer homology as, roughly, the Lagrangian
Floer homology of a certain manifold and submanifolds associated to a Heegaard diagram for Y . We
define the manifold and submanifolds now.

Definition 2.8. Let Σ be a genus-g surface.

(a) The gth symmetric product of Σ, denoted Symg Σ, is the quotient of Σ× · · · ×Σ (g times)
by the natural action of the symmetric group Sg by permuting coordinates. In other words,
it is the set of unordered g-tuples of points in Σ, with repetitions allowed.

(b) Let Σ be as above and let α = (α1, . . . , αg) be a set of g attaching circles in Σ. The torus
Tα associated to α is (α1 × · · · × αg)/Sg.

Remark 2.9. Clearly, the kth symmetric power of any space X can be defined in the same way. However,
if X is a genus-g surface Σ, then Symk Σ is actually a manifold of dimension 2k. The reason is that
Symk Σ locally looks like an open set of unordered tuples of k complex numbers, and thus can be seen as
an open set of monic polynomials of degree k over C by the fundamental theorem of algebra. The monic
polynomials over C are homeomorphic to Ck. Also, for our purposes, k = g will the the only relevant
power.

Remark 2.10. Since attaching circles must be disjoint, no two distinct points of α1 × · · · × αg are in the
same orbit of Sg. Thus, Tα is homeomorphic to α1 × · · · × αg ≃ (S1)g, so we are justified in calling it a
torus. It is a real submanifold of Symg Σ.

Now say we have a Heegaard diagram (Σ,α,β). We then have a 2g-dimensional manifold Symg Σ
and two g-dimensional submanifolds Tα and Tβ . In Section 2.3, we will proceed as in Lagrangian Floer
homology and define a group associated to (Symg Σ,Tα,Tβ). The result will be the Heegaard Floer
homology of our original manifold Y .

2.2.2 Homotopy classes of Whitney disks and moduli spaces of holomorphic representa-

tives.

As in Lagrangian Floer homology, the generators of the chain complex for Heegaard Floer homology
will be intersection points x ∈ Tα ∩ Tβ, and the differentials will come from holomorphic mappings of
disks into Symg Σ which “start” and “end” at intersection points. We define the relevant spaces of these
Whitney disks here. We will not discuss the analytic details; they can be found in [7].
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Definition 2.11. Let x,y ∈ Tα ∩ Tβ. A Whitney disk connecting x and y is a map φ : D2 → Symg Σ
such that φ(−i) = x, φ(i) = y, φ(z) ∈ Tα for |z| = 1 and Re z ≥ 0, and φ(x) ∈ Tβ for |z| = 1 and
Re z ≤ 0. Define π2(x,y) to be the space of homotopy classes of Whitney disks connecting x and y. We
will continue to write φ for an element of π2(x,y).

If we choose a complex structure on Σ, we get an induced complex structure on Symg Σ, so we
can talk about holomorphic maps of D2 into Symg Σ. Let φ be a homotopy class in π2(x,y); certain
representatives of φmay be holomorphic. Similarly, if we choose a different almost-complex structure J on
Symg Σ, we can talk about pseudoholomorphic representatives of φ. In fact, when we say “holomorphic,”
we will almost always mean “pseudoholomorphic with respect to a suitably perturbed almost-complex
structure,” but we will not work at this level of detail.

Given a holomorphic representative φ0 of φ, we can obtain others by reparametrization as follows.
Map D2 conformally to the strip 0 < Re z < 1; then φ0 is a holomorphic map from the strip into Symg Σ,
and we can obtain another by precomposing φ0 with a translation by it for any t ∈ R. The resulting
map is homotopic to φ0, so it is a holomorphic representative of the homotopy class φ. In this way, we
have an action of R on the set of holomorphic representatives of φ.

Definition 2.12. Let x,y ∈ Tα ∩ Tβ and let φ ∈ π2(x,y).

(a) M(φ) is the set of holomorphic representatives of φ with respect to some almost-complex
structure J on Symg Σ.

(b) M(φ) := M(φ)/R, where the action of R on M(φ) by reparametrization is that described
in the above paragraph.

For suitable perturbations of the almost-complex structure on Symg Σ, these moduli spaces M(φ)
and M(φ) are manifolds in a natural way. Furthermore, there exists a mapping µ : π2(x,y) → Z called
the Maslov index. For φ ∈ π2(x,y), one expects µ(φ) to be the dimension of M(φ), and for a suitable
perturbation of the almost-complex structure, this is the case. In fact, we have the following theorem:

Theorem 2.13. Let (Σ,α,β) be a Heegaard diagram. Choose a complex structure on Σ. For suitable
perturbations of the induced almost-complex structure on Symg Σ, we have the following: for x,y ∈
Tα ∩ Tβ and φ ∈ π2(x,y),

(a) M(φ) is an orientable manifold of dimension µ(φ), and

(b) M(φ) is an orientable manifold of dimension µ(φ) − 1, and

(c) If µ(φ) = 1, then M(φ) is compact.

To obtain orientations on the moduli spaces, we would need to make more choices; see Definition 3.11
of [7]. We will not worry about this particular detail; we will assume that all moduli spaces come with
orientations.

2.2.3 Spinc structures.

For some x and y in Tα ∩ Tβ, the set π2(x,y) is empty. In fact, there is a simple necessary and sufficient
condition for π2(x,y) to be nonempty. Choose a path σ from x to y in Tα and a path τ from y to x in
Tβ. After homotoping to avoid intersecting the diagonal if necessary, we may lift σ and τ to Σ× · · ·×Σ.
But a path in Σ × · · · × Σ corresponds to g paths in Σ; hence σ and τ give us two sets of g paths
{σ1, . . . , σg} and {τ1, . . . , τg} in Σ. Write cx,y =

∑
σi +

∑
τi; then cx,y is a cycle. Note that cx,y

depends on some arbitrary choices of liftings as well as on x and y.
There is a simple way to construct cx,y which does not involve Symg Σ. Suppose x = {x1, . . . , xg}

and y = {y1, . . . , yg}. Start at x1; it lies on some curve αi. Follow αi in any direction until reaching
a point yj, and add the chosen path to the chain cx,y. The point yj , in turn, lies on some curve βk;
follow βk in any direction until reaching a point xl, and add the path to cx,y. Take another α curve to
a point of y, then another β curve back to a point of x, etc. At some point, one returns to x1. If all
intersection points have been exhausted, then cx,y is complete. If not, start with an unused point of x
and continue the process until all intersection points are used up. Again, choices have been made, and
cx,y is not unique.
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It will, most likely, be the case that cx,y 6= 0 in H1(Σ). However, we may use the inclusion Σ →֒ Y
to view cx,y as an element of H1(Y ). The following basic proposition asserts that including cx,y in Y
amounts to looking at cx,y modulo the α and β curves:

Proposition 2.14. Let ι : Σ →֒ Y be the inclusion map. The induced homomorphism

H1(Σ)

〈[α1], . . . , [αg], [β1], . . . , [βg]〉
ι∗→ H1(Y )

is an isomorphism.

Now we can state the necessary and sufficient condition for π2(x,y) to be nonempty:

Proposition 2.15. Let x,y ∈ Tα ∩ Tβ. Then ι∗cx,y is independent of the choices made in its definition;
we will call it ǫ(x,y). Furthermore, π2(x,y) = ∅ if and only if ǫ(x,y) 6= 0 in H1(Y ), which happens if
and only if cx,y ∈ H1(Σ) is in the span of the α and β curves.

It is clear that for x,y, z ∈ Tα ∩ Tβ, we can use cx,y + cy,z to compute cx,z, and hence ǫ(x,y) +
ǫ(y, z) = ǫ(x, z). Thus, ǫ gives the elements of Tα ∩ Tβ a relative grading by H1(Y ) = H2(Y ). We
would like to lift this ǫ-grading to an absolute grading in a natural way. The solution will be to absolutely
grade elements of Tα ∩ Tβ according to Spinc structures on Y , which form an affine space modelled on
H2(Y ). Differences in the Spinc grading will correspond to the ǫ-differences defined above.

For three-manifolds, the most useful definition of Spinc-structures will be the following (due to Turaev
[14]):

Definition 2.16. Let Y be a three-manifold.

(a) Two nowhere-vanishing vector fields v1 and v2 on Y are said to be homologous if there
exists a 3-ball B inside Y such that v1 and v2 are homotopic after restriction to Y \B.

(b) A Spinc-structure on Y is a homology class of nowhere-vanishing vector fields on Y .

(c) If s is a Spinc-structure on Y represented by a nowhere-vanishing vector field v, its conju-
gate Spinc-structure s is the one represented by −v.

Remark 2.17. It is a well-known fact that all closed oriented three-manifolds are parallelizable. Thus,
they admit nowhere-vanishing vector fields and hence Spinc-structures.

In fact, let Y be a closed orientable three-manifold; since Y is parallelizable, nowhere-vanishing vector
fields on Y correspond (after choosing a trivialization) to maps of Y into R3 \ {0}. Suppose v is such a
map. Since R3 \ {0} ∼ S2, its second cohomology group is generated by some fixed class ω. Pulling back
ω by v, we get an element of H2(Y ). In fact, it can be shown that the association v 7→ v∗ω is defined on
the level of Spinc structures and gives a bijection between Spinc(Y ) and H2(Y ). If φ : TY ≃ Y × R3 is
the trivialization we chose, we will call this bijection Fφ : Spinc(Y ) → H2(Y ).

Fφ is not independent of the trivialization φ. However, given any two Spinc structures s1 and s2 on Y ,
one can consider the element Fφ(s2)− Fφ(s1) in H

2(Y ). It turns out that this difference is independent
of φ:

Proposition 2.18. If s1, s2 ∈ Spinc(Y ), then Fφ(s2)− Fφ(s1) ∈ H2(Y ) is independent of the trivializa-
tion φ. We will write Fφ(s2)− Fφ(s1) simply as s2 − s1.

This proposition tells us that H2(Y ) acts freely and transitively on Spinc(Y ) independently of the
trivialization of TY . In other words, Spinc(Y ) is naturally an affine space over H2(Y ).

We now define a Spinc(Y )-grading on elements of Tα ∩ Tβ. Choose a basepoint z ∈ Σ disjoint from
the α and β curves. By Proposition 2.6(c), we can pick a Morse function f inducing the Heegaard
diagram (Σ,α,β). Suppose x ∈ Tα ∩ Tβ corresponds to the unordered set {x1, . . . , xg} of points in Σ.
Each xi lies on a gradient flow of −f from an index 2 critical point to an index 1 critical point. Similarly,
z lies on a flow from the index 3 critical point to the index 0 critical point. These flows trace out g + 1
segments in Y . Define Y0 to be Y minus a tubular neighborhood of each of the g + 1 segments.

On Y0, the vector field ∇f is nonvanishing. Furthermore, Y \ Y0 is a disjoint union of 3-balls. One
3-ball contains an index 3 and an index −3 critical point of f , while the others contain an index 1 and
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an index −1 critical point each. Thus, on the boundary of each 3-ball, the index of ∇f is zero. Hence
we can extend ∇f to a nonvanishing vector field on all of Y , thereby obtaining a Spinc structure on Y .
Define sz(x) to be this Spinc structure. The below proposition indicates how the map sz behaves. It
also describes the dependence of sz on the basepoint z. To state this second part of the proposition, we
need a definition. Inside the handlebody U1 formed by attaching the α circles to Σ, αi becomes the belt
sphere of a 1-handle. There is a corresponding “dual” circle in U1, which we can push back up into Σ
to obtain a curve α∗

i . Then α
∗
i intersects αi once and has zero intersection with the other α curves. Let

[α∗
i ] denote the homology class of α∗

i in H1(Y ), and let PD[α∗
i ] denote its Poincare dual in H2(Y ).

Proposition 2.19. Let z ∈ Σ be a point in the complement of the α and β curves. The procedure
described above gives a well-defined map sz : Tα ∩ Tβ → Spinc(Y ), where the subscript z indicates the
dependence of this map on the basepoint z. It associates to x ∈ Tα ∩ Tβ the Spinc structure sz(x) in
such a way that

(a) the equation
sz(y)− sz(x) = PD(ǫ(x,y))

holds for all x,y ∈ Tα ∩ Tβ; and

(b) if x ∈ Tα ∩ Tβ, and z, z
′ are two basepoints connected by a small arc intersecting αi once

and having zero intersection with the other α and β curves, then

sz(x)− sz′(x) = ±PD[α∗
i ].

For a proof of Proposition 2.19, see Section 2.6 of [7].
Given a basepoint z, we have now interpreted the relative H2(Y )-grading ǫ on Tα ∩ Tβ as a natural

partitioning of Tα ∩ Tβ according to Spinc structures on Y . Our construction of Heegaard Floer homol-

ogy will respect this splitting; for each Spinc structure s on Y we will define a group ĤF (Y, s), and we

will have ĤF (Y ) := ⊕s∈Spinc(Y )ĤF (Y, s).
Finally, the following definition will be important in the future:

Definition 2.20. Let s ∈ Spinc(Y ). The first Chern class c1(s) of s is defined as s− s ∈ H2(Y ).

2.2.4 Basepoints.

We saw in the previous section that the map sz : Tα ∩ Tβ → Spinc(Y ) depends on a choice of basepoint
z ∈ Σ. In fact, we will always assume that we have chosen some basepoint z in Σ \ {α1 ∪ · · · ∪ αg ∪
β1 ∪ · · · ∪ βg}. The basepoint is also important in the definition of the differential in the chain complex
below. For this purpose, we introduce the following definition:

Definition 2.21. Let z ∈ Σ be a basepoint in the complement of the α and β curves.

(a) Vz is defined as {z} × Σ× · · · × Σ/Sg, a submanifold of Symg Σ of dimension 2g − 2.

(b) Suppose x,y ∈ Tα ∩ Tβ and φ ∈ π2(x,y). Then nz(φ) is the signed intersection number
between φ and Vz . This definition does not depend on the choice of representative of the
homotopy class φ, as long as a suitable (e.g. transverse to Vz) representative is chosen.

2.2.5 Domains.

In Section 2.2.3, we characterized when π2(x,y) is nonempty. When it is nonempty, we want a more
concrete description of π2(x,y). Unfortunately, it is hard to directly visualize maps from D2 into the
2g-dimensional manifold Symg Σ when g > 1. Luckily, we will be able to think of a Whitney disk in terms
of a 2-chain in Σ called its domain. Besides aiding visualization, the use of domains will be essential in
showing that the sums in the differential of the chain complex we will define are finite.

Consider the (closures of the) components of Σ\{α1∪· · ·∪αg ∪β1∪· · ·∪βg}; we will denote them by
{σi}. A domain in Σ is a formal sum of the regions σi which “connects two points x and y in Tα ∩ Tβ.”
We now make this precise:

Definition 2.22. Let x = {x1, . . . , xg} and y = {y1, . . . , yg} be points in Tα ∩ Tβ.
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(a) A domain connecting x to y is a formal linear combination of the σi, say D =
∑
niσi,

such that ∂D consists of 2g arcs, g of which connect xj to yτ(j) for some permutation τ , and
g of which connect yj to xτ ′(j) for some other permutation τ ′. The set of domains connecting
x to y is denoted by D(x,y).

(b) Suppose φ ∈ π2(x,y). The domain of φ, denoted D(φ), is defined as follows: choose a
point zi in the interior of each σi. Then D(φ) :=

∑
niσi, where ni is the signed intersection

number of imφ (for a suitable representative of φ) with the submanifold Vzi of Sym
g Σ. The

coefficients ni are independent of the zi and of the representative of φ.

The following result tells us that, for diagrams of genus g > 2, homotopy classes of Whitney disks
are determined by their domains:

Proposition 2.23. Suppose g > 2. The map φ 7→ D(φ) is a bijection between π2(x,y) and D(x,y). If
g = 2, the map is a surjection. If g = 1, it is an injection. Furthermore, if w ∈ Σ \ {α1 ∪ · · · ∪ αg ∪
β1 ∪ · · · ∪ βg} and nw(D) denotes the coefficient of a domain D on the region σi containing w, then for
φ ∈ π2(x,y), we have nw(φ) = nw(D(φ)).

Accordingly, we redefine π2(x,y) when g = 2:

Definition 2.24. Let (Σ,α,β) be a Heegaard diagram of genus 2. Suppose x,y ∈ Tα ∩ Tβ . From
now on, π2(x,y) will mean the set {homotopy classes of Whitney disks connecting x to y} modulo the
relation φ1 ∼ φ2 if D(φ1) = D(φ2). With this definition, the map D is now a bijection between π2(x,y)
and D(x,y).

It is not hard to determine all the possible domains connecting x to y. Namely, suppose D =
∑
niσi

is such a domain. Then, since the sum of the regions σi is a generator for H2(Σ), we see that
∑

(ni+1)σi
is also a domain connecting x to y. Informally, we have “added Σ” to D. In general, for any j ∈ Z, the
domain

∑
(ni + j)σi connects x to y.

When H2(Y ) = 0, these domains are the only domains connecting x to y. In general, however,
elements of H2(Y ) correspond to periodic domains, i.e. domains P such that nz(P ) = 0 and ∂P =∑
kiαi +

∑
ljβj for some ki, lj . If D is a domain connecting x and y, and P is a periodic domain, then

D + P is also a domain connecting x to y. We have now found all such domains:

Proposition 2.25. Let x,y ∈ Tα ∩ Tβ. Then there is a one-to-one correspondence between D(x,y)
and Z×H2(Y ). Hence, combining this result with Proposition 2.23, there is a one-to-one correspondence
between π2(x,y) and Z×H2(Y ).

Corollary 2.26. Suppose b1(Y ) = 0, i.e. Y is a rational homology three-sphere. Let z be a basepoint in
the Heegaard diagram for Y , as in Section 2.2.4. Let x,y ∈ Tα ∩ Tβ with ǫ(x,y) = 0. Then there is a
unique φ ∈ π2(x,y) with nz(φ) = 0.

Proof. Suppose z ∈ σi0 . We want to show that there exists a unique domain D′ connecting x and y with
a coefficient of zero on σi0 . Let D =

∑
niσi be any domain connecting x and y. By Proposition 2.25,

the unique choice for D′ is D′ =
∑

(ni − ni0)σi.

There is a concrete algorithm to determine the domain of some element φ ∈ π2(x,y), given x

and y. Consider the cycle cx,y constructed in Section 2.2.3. If it represents a nontrivial element of
H1(Σ)

〈[α1],...,[αg],[β1],...,[βg]〉
= H1(Y ), then ǫ(x,y) 6= 0, so π2(x,y) = ∅. If, on the other hand, cx,y is zero in

this group, then it lies in the span of the α and β curves, so by adding some multiples of these curves, we
obtain a chain c′x,y which is zero in H1(Σ). The regions σi specify a cell decomposition of Σ and hence
a cellular chain complex computing H∗(Σ). Thus, we may express c′x,y as the boundary of some domain
D formed as a linear combination of the regions σi. Then D is the domain D(φ) of some φ ∈ π2(x,y),
by the correspondence between domains and Whitney disks, and the possible choices for D arising from
this algorithm are precisely the domains of disks in π2(x,y).

In the case where Y is a rational homology three-sphere, i.e. H2(Y ) = 0, there is a unique such D
satisfying nz(D) = 0. Again, we would like a way of constructing this D without dealing with Symg Σ.
Consider ∂D, which equals c′x,y in the notation of the above paragraph. For each region σi, we want a
way of computing the coefficient of D on σi. Choose a point wi in the interior of σi and a path γi from z
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to wi which intersects c′x,y transversely. Start at z and label the region in which z lies with the coefficient
0. Now begin walking along γi. When leaving one region and entering another, set the coefficient of the
new region to be that of the old region if there is no component of c′x,y along the boundary. If, on the
other hand, c′x,y is traversed from right to left (according to the orientation of c′x,y) with multiplicity
n, take the new coefficient to be n plus the old coefficient. If c′x,y is traversed from left to right with
multiplicity n, take the new coefficient to be −n plus the old coefficient. In this way, we eventually
label the region σi, and we can perform this procedure with any σi. The resulting coefficients are the
coefficients of D on the regions σi.

2.3 The definition of Heegaard Floer homology.

2.3.1 The definition of ĤF .

We can now proceed to define the chain complex giving rise to the most basic form of Heegaard Floer
homology, denoted ĤF . We first make the definition for rational homology three-spheres:

Definition 2.27. Let Y be a closed oriented three-manifold with b1(Y ) = 0. Let s be a Spinc structure
on Y . Choose a Heegaard diagram (Σ,α,β) for Y and a basepoint z in Σ disjoint from the α and β
curves. Choose a complex structure on Σ and a suitable perturbation of the induced complex structure
on Symg Σ, as in Theorem 2.13 (where g is the genus of Σ).

(a) As a group, ĈF (Y ) is defined as Z〈Tα ∩ Tβ〉, the free Abelian group on the points in
Tα ∩ Tβ.

(b) Let x ∈ Tα ∩ Tβ. The differential of x is defined to be

∂x =
∑

{y∈Tα∩Tβ,φ∈π2(x,y)|µ(φ)=1,nz(φ)=0}

#M(φ) · y.

Theorem 2.28. The differential satisfies ∂2 = 0, so we can define ĤF (Y ) = ker ∂
im ∂ .

Several remarks are in order. First of all, our assumption that b1(Y ) = 0 implies that for any two
generators x,y ∈ Tα ∩ Tβ, there exists at most one φ ∈ π2(x,y) with nz(φ) = 0 (see Corollary 2.26).
Thus, there is no problem with the finiteness of the sum.

Second of all, if ǫ(x,y) 6= 0, i.e. (by Proposition 2.19) if the Spinc structures s(x) and s(y) are

different, then the y-component of ∂x vanishes. Thus, ĈF (Y ) splits up as a sum of complexes according
to Spinc structures:

Definition 2.29. Let Y be as above and let s be a Spinc structure on Y . Then ĈF (Y, s) := Z〈{x ∈

Tα ∩ Tβ|s(x) = s}〉. By what has been said, ĈF (Y, s) is a subcomplex of ĈF (Y ), and we have ĈF (Y ) =

⊕s∈Spinc(Y )ĈF (Y, s).

As a third remark, the notation ĈF (Y ) is slightly misleading, since the chain complex depends on the
choices we made. The following theorem, though, tells us that the choices only matter up to homotopy
equivalence.

Theorem 2.30. Let s ∈ Spinc(Y ). Making different choices in the above definitions leads to chain

homotopy equivalent complexes ĈF (Y, s).

One peculiar aspect of our construction of ĤF is that we introduced no homological grading on
ĈF . By analogy with ordinary homology, we might have expected a homological grading such that
the differential ∂ lowered homological degree by 1. For general 3-manifolds, the best we can do in this
direction is a relative Z/2 grading on Heegaard Floer homology. Since we are dealing in this section
with rational homology three-spheres, however, we can do a little better: we can introduce a relative
Z-grading on each ĈF (Y, s).

Definition 2.31. For x,y ∈ Tα ∩ Tβ with ǫ(x,y) = 0, define F (x,y) = µ(φ)− 2nz(φ), where φ is any
class in π2(x,y). Since b1(Y ) = 0, this definition is independent of the choice of φ.
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In the definition of the differential ∂, we only count disks φ which satisfy µ(φ) = 1 and nz(φ) = 0,
so ∂ lowers degree by one as expected. Note also that this relative grading permits a definition of the
Euler characteristic (up to an overall sign) of each group ĤF (Y, s) in the usual way.

This grading does not lift to an absolute Z-grading in a natural way; instead, it lifts naturally to an
absolute Q-grading in which the grading differences are all integers. We will assume the existence of this
natural Q-lift, but we will omit its definition due to space considerations.

For integer homology three-spheres, the absolute Q-gradings turn out to live in Z, so in this very
special case we do have an absolute Z-grading. In particular, for any Heegaard diagram (Σ,α,β, z)

for S3, the complex ĈF (S3) computed using this diagram is absolutely Z-graded. The Heegaard Floer

homology of S3 is localized in degree 0: ĤF 0(S
3) = Z, and ĤF i(S

3) = 0 for all i 6= 0.

2.3.2 Other variants: HF∞, HF−, and HF+.

In the above definition of ĤF , we ensured finiteness of the differential by requiring nz(φ) = 0 for
any contributing φ. There is another way to ensure finiteness of each coefficient which allows φ to have
nz(φ) 6= 0. One simply counts φ with different values of nz(φ) as coefficients of different formal generators
in the expression for ∂x. Along these lines, we have the following definition:

Definition 2.32. Suppose Y is a three-manifold, and make appropriate choices as in Definition 2.27.

(a) As a group, CF∞(Y ) := Z〈(Tα ∩ Tβ) × Z〉, the free Abelian group on generators [x, i]
where x ∈ Tα ∩ Tβ and i ∈ Z.

(b) Let [x, i] ∈ (Tα ∩ Tβ)× Z. The differential of [x, i] in the complex CF∞(Y ) is

∂[x, i] :=
∑

{y∈Tα∩Tβ,φ∈π2(x,y)|µ(φ)=1}

#M(φ) · [y, i− nz(φ)].

(c) ∂2 = 0 holds as before, and we define HF∞(Y ) = ker ∂
im∂ . Also as before, we have a splitting

ofCF∞(Y ) into subcomplexes according to Spinc structures: CF∞(Y ) = ⊕s∈Spinc(Y )CF
∞(Y, s).

There is a corresponding splitting of the homology: HF∞(Y ) = ⊕s∈Spinc(Y )HF
∞(Y, s).

Finiteness of ∂ follows from the fact that for any x,y ∈ Tα ∩ Tβ, there is at most one φ ∈ π2(x,y)
with µ(φ) = 1. For a proof, see Proposition 2.15 and Lemma 3.3 of [7]. Note that this argument could

equally well have been applied to ĈF .
We can define a relative Z-grading as before: if [x, i] and [y, j] are two generators for CF∞(Y ), then

F ([x, i], [y, j]) := F (x,y) + 2i− 2j. The differential ∂ still decreases the degree by one.
There is an obvious automorphism of CF∞(Y ), denoted by U , which sends the generator [x, i] to

[x, i−1]. This automorphism decreases the relative homological grading by 2. Thus, CF∞(Y ) is naturally
a module over Z[U,U−1] (where here U is a formal variable acting on CF∞(Y ) via the automorphism
U). In fact, for any Y with b1(Y ) = 0, and for any s, HF∞(Y, s) is just the trivial module Z[U,U−1]
over Z[U,U−1]; see Section 10 of [6]. Nevertheless, subcomplexes and quotients of CF∞(Y, s) will have
interesting homology.

Definition 2.33. Let Y be as in Definition 2.27, with appropriate choices. Let s ∈ Spinc(Y ).

(a) CF−(Y, s) is defined to be the subcomplex of CF∞(Y, s) spanned by those generators
[x, i] with i ≤ 0. It is naturally a module over Z[U ].

(b) CF+(Y, s) is defined to be the quotient of CF∞(Y, s) by CF−(Y, s). It is naturally a

module over Z[U,U−1]
(U·Z[U ]) .

Remark 2.34. Elements of Z[U,U−1]
(U·Z[U ]) are just polynomials in U−1, so we will sometimes write this ring

as Z[U−1]. The reason we defined it as a quotient of Z[U,U−1] rather than directly as Z[U−1] was to
emphasize the fact that it has a natural action of U (as well as of U−1).

Let s ∈ Spinc(Y ). Given a choice of Heegaard diagram, there is an obvious short exact sequence
of complexes 0 → CF−(Y, s) → CF∞(Y, s) → CF+(Y, s) → 0. As usual, such a short exact sequence
induces a long exact sequence in homology. The homology sequence does not depend on the choice of
Heegaard diagram:
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Theorem 2.35. There exists a long exact sequence

· · · → HF−(Y, s) → HF∞(Y, s) → HF+(Y, s) → · · ·

which depends only on Y and s (up to isomorphism of sequences).

Proof. This result is Theorem 2.1 of [8].

Remark 2.36. Because there are no absolute Z-gradings on the complexes, this long exact sequence is
actually an exact triangle. In other words, in the statement of Theorem 2.35, the map on the far right
of the sequence is the same as the map on the far left, and the sequence keeps repeating in this manner.
Another exact triangle, associated to knot surgeries, will be very important in Section 4.

2.3.3 Three-manifolds Y with b1(Y ) > 0.

We will often consider manifolds which are obtained as zero-surgeries on knots in S3 and hence have
nonzero first Betti number. Thus, we should extend our definitions to include manifolds Y with b1(Y ) >
0. As mentioned above, we will not get a relative Z-grading on Heegaard Floer homology in this case. A
more pressing issue, though, is that our arguments for the finiteness of the differential in the complexes
defined above do not hold here. For x,y ∈ Tα ∩ Tβ with ǫ(x,y) = 0, there may be infinitely many
distinct classes φ ∈ π2(x,y) with µ(φ) = 1 and nz(φ) = 0.

Proposition 2.25 illustrates this phenomenon. We have π2(x,y) ≃ Z × H2(Y ), but while requiring
nz(φ) = 0 fixes the Z-component of φ, there is still an H2(Y )-degree of freedom in φ coming from the
addition of periodic domains. It may be the case that infinitely many of these possible φ have µ(φ) = 1.

To avoid this problem, we will not allow ourselves to choose an arbitrary Heegaard diagram for Y .
Rather, we will restrict attention to “weakly admissible” and “strongly admissible” Heegaard diagrams,
as defined below:

Definition 2.37. Let (Σ,α,β) be a Heegaard diagram.

(a) (Σ,α,β) is weakly admissible if all (nonzero) periodic domains have at least one positive
and at least one negative coefficient.

(b) Let s ∈ Spinc(Y ). (Σ,α,β) is strongly admissible for s if, for any periodic domain D such
that 〈c1(s), H(D)〉 = 2n, some coefficient of D is greater than n. Here H(D) denotes the
element of H2(Y ) corresponding to D under the bijection H2(Y ) ↔ { periodic domains }.

To see why weak admissibility ensures the finiteness in the differential for ĤF , suppose φ ∈ π2(x,y)
admits a holomorphic representative. Then im φ is a complex submanifold of Symg Σ and hence has
only positive intersections with the complex submanifolds Vw for any w. Since the coefficients in the
domain D(φ) were defined to be intersection numbers with Vw for various w, these coefficients must all
be positive. But if all periodic domains P have both positive and negative coefficients, then only finitely
many domains of the form D(φ) + P have all positive coefficients. This means that only finitely many
elements φ′ of π2(x,y) with nz(φ

′) = 0 can possibly admit holomorphic representatives, as required.

In general, weak admissibility will suffice for ĤF (Y ) and HF+(Y ), while HF−(Y, s) and HF∞(Y, s)
will require strong admissibility for s in order to be well-defined.

Although there is no relative Z-grading in this context, there is a relative Z/2-grading. Fix orien-
tations on the α and β curves, inducing orientations on Tα and Tβ. Given this choice of orientations,
we define an absolute Z/2 grading on elements of Tα ∩ Tβ. It will depend on the orientations, but the
associated relative grading will not. Suppose x is an intersection points in Tα ∩ Tβ. Say gr(x) = 1 if, at
x, the basis for Tx Symg Σ obtained by concatenating an oriented basis for TxTα and an oriented basis
for TxTβ agrees with the orientation on Tx Symg Σ coming from the orientation on Σ, i.e. if Tα intersects
Tβ positively at x. Say gr(x) = −1 otherwise. It is clear that changing the choice of orientations on the
α and β curves affects the grading of each x ∈ Tα ∩ Tβ in the same way. Thus, the induced relative Z/2
grading is independent of the choices.

Given a choice of orientations on the α and β curves, we can compute gr(x) for x ∈ Tα ∩ Tβ without
explicit reference to Symg Σ as follows. The point x corresponds to g points x1, . . . , xg in Σ, where
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xi ∈ αi ∩ βσ(i) for some permutation σ. Let ǫi(x) be +1 if αi intersects βσ(i) positively at xi, and let it
be −1 otherwise. The formula

gr(x) = sgn(σ)

g∑

i=1

ǫi(x) (1)

follows from the way in which orientations on the α and β curves and on Σ induce orientations on Tα,
Tβ, and Symg Σ.

For our purposes, this relative Z/2 grading is important since with it, the Euler characteristic of

ĤF (Y, s) still makes sense (up to overall sign as in the previous case) for each Spinc structure s.

2.4 Properties of Heegaard Floer homology.

We will need a few facts about Heegaard Floer homology later; they will be collected here.

2.4.1 Conjugation symmetry.

Proposition 2.38. Let s ∈ Spinc(Y ) and let s denote its conjugate. Then ĤF (Y, s) ≃ ĤF (Y, s).

Proof. Choose a Heegaard diagram (Σ,α,β) for Y . As noted in Section 2.1.2, (Σ,β,α) also represents
Y . Since Heegaard Floer homology is independent of the choice of Heegaard diagram, either diagram
may be used to compute ĤF (Y ). The first diagram computes ĤF (Y ) in the usual way. In the second,
the generators and differentials are the same. However, the Spinc structures associated to intersection
points x ∈ Tα ∩ Tβ are different. By Proposition 2.6(c), we can pick a Morse function f inducing
the Heegaard diagram (Σ,α,β); then −f induces (Σ,β,α). If x ∈ Tα ∩ Tβ, let sz(x) be the Spinc

structure induced by x using f , and let s
′
z(x) be the one induced using −f (here z is a basepoint

as usual). There is a finite number of balls in Y such that on their complement, sz(x) = ∇f and
s
′
z(x) = −∇f . But sz(x) is also represented by −∇f on this complement. Hence s

′
z(x) and sz(x) are

represented by homologous nowhere-vanishing vector fields, so they are equal. We can conclude that
ĤF (Y, sz(x)) = ĤF (Y, s′z(x)) = ĤF (Y, sz(x)). But all Spin

c structures s on Y for which ĤF (Y, s) 6= 0

are of the form sz(x) for some x. Thus, ĤF (Y, s) = ĤF (Y, s) for all s ∈ Spinc(Y ).

2.4.2 The Euler characteristic of ĤF .

Proposition 2.39. Suppose Y is a three-manifold and s ∈ Spinc(Y ). Then

χ(ĤF (Y, s)) =

{
±1 if H1(Y ) is finite,

0 otherwise.

Proof. We will prove the result in two steps. The first will be to show that χ(ĤF (Y )) = #(H1(Y ))

if H1(Y ) is finite and χ(ĤF (Y )) = 0 otherwise. The second will be to show that χ(ĤF (Y, s)) is
independent of s.

For the first step, we begin by computing #(H1(Y )) as follows: choose a Morse function f on Y
satisfying the conditions of Proposition 2.6. We get an induced handle decomposition of Y and hence a
cell decomposition of (a space equivalent to) Y . By Remark 2.4, the orientation on Y determines one on
Σ.

Consider the cellular chain complex associated to this cell decomposition. It has one generator each
in degrees 0 and 3, and it has g generators each in degrees 1 and 2. The boundary map from C1 to C0 is
zero (since H0(Y ) = Z), so we have H1(Y ) = C1/ imC2. To pin down the boundary map from C2 to C1,
we need to choose some orientations. Picking orientations for the α and β curves will suffice, since this
choice determines the signed intersection numbers between the attaching circles of the 2-handles and the
belt circles of the 1-handles.

Label the generators of C1 and C2 as x1, . . . , xg and y1, . . . , yg respectively; the xi and yj correspond
to the index 1 and index 2 critical points of f . We have the formula

∂yj =
∑

i

#(αi ∩ βj)xi,

13



where the coefficients are the signed intersection numbers. In other words, with respect to our chosen

bases, the map C2
∂
→ C1 is a map Zg → Zg whose matrixM has ijth entry #(αi∩βj). If H1(Y ) is finite,

then M has nonzero determinant, and #(H1(Y )) = detM . On the other hand, if H1(Y ) is infinite, then
M must have determinant zero.

Hence, to complete the first step, we must show that χ(ĤF (Y )) = detM . Write detM as the
expression

∑
σ∈Sg

sgn(σ)#(α1∩βσ(1)) · · ·#(αg∩βσ(g)). The term sgn(σ)#(α1∩βσ(1)) · · ·#(αg∩βσ(g)) is a

sum, over all intersection points x ∈ Tα ∩ Tβ whose associated permutation is σ, of sgn(σ)ǫ1(x) · · · ǫg(x),
where the numbers ǫi(x) = ±1 were defined in Section 2.3.3. In other words, with respect to the chosen
orientations on the α and β curves (so that gr(x) is well-defined for x ∈ Tα ∩ Tβ), we have detM =∑

x∈Tα∩Tβ
gr(x). We may write this sum as #{x ∈ Tα ∩ Tβ| gr(x) = 1} − #{x ∈ Tα ∩ Tβ| gr(x) =

−1} = χ(ĈF (Y )). But, by the usual argument, χ(ĈF (Y )) = χ(ĤF (Y )), so we have completed the first
step.

For the second step, we want to show χ(ĤF (Y, s)) is independent of s. Equivalently, for any a ∈

H2(Y ), we want χ(ĤF (Y, s)) = χ(ĤF (Y, s + a)). As in the statement of Proposition 2.19, though, for
each αi there is a dual curve α∗

i in Σ which intersects αi once and has zero intersection with the rest
of the α curves. Also, all curves αi and α∗

i have self-intersection zero. An elementary argument tells
us that {[α1], . . . , [αg], [α

∗
1], . . . , [α

∗
g]} form a basis for H1(Σ) ≃ Z2g. Hence any element of H1(Σ) is

in the span of the [αi] and the [α∗
i ], so any element of H1(Σ) is in the span of the α∗

i curves modulo

the α curves. In particular, since H1(Y ) = H1(Σ)
〈[α1],...,[αg],[β1],...,[βg]〉

, we see that {[α∗
1], . . . , [α

∗
g]} spans

H1(Y ). Hence {PD[α∗
1], . . . , PD[α∗

g]} spans H2(Y ), and so we only need show that χ(ĤF (Y, s)) =

χ(ĤF (Y, s+ PD[α∗
i ])) for any i.

Choose a Heegaard diagram for Y which is weakly admissible with basepoints z and z′, where z and
z′ are two points on either side of αi, connected by a short arc δ which intersects αi once and has zero
intersection with the rest of the α curves. Such a Heegaard diagram always exists; see Section 5 of [6].

Then, by Proposition 2.19, the generators of ĈF (Y, s) with respect to the basepoint z are the generators

of ĈF (Y, s + PD[α∗
i ]) with respect to z′. While the maps in the complex may be different, the Z/2

gradings of the generators are not, since they do not depend on basepoints. Since the Euler characteristic
in homology may be computed on the chain level, we have χ(ĤF (Y, s)) = χ(ĤF (Y, s + PD[α∗

i ])) as

claimed, where the left-hand side is computed using ĈF (Y, s) with the basepoint z and the right-hand

side is computed using ĈF (Y, s+ PD[αi]) with the basepoint z′.

2.4.3 ĤF = 0 if and only if HF+ = 0.

Proposition 2.40. Suppose Y is a three-manifold and s ∈ Spinc(Y ). Then ĤF (Y, s) = 0 if and only if
HF+(Y, s) = 0.

Proof. The map U , viewed as an endomorphism of CF+(Y, s), induces a short exact sequence of chain
complexes

0 → ĈF (Y, s) → CF+(Y, s)
U
→ CF+(Y, s) → 0

and hence a corresponding long exact sequence on homology. If HF+(Y, s) = 0, then clearly ĤF (Y, s) =

0. Conversely, suppose ĤF (Y, s) = 0. Then HF+(Y, s)
U
→ HF+(Y, s) is an isomorphism. Suppose [x, i]

is some element of HF+(Y, s); then U i+1[x, i] = 0. But since U is an isomorphism on homology, we
must have [x, i] = 0. This holds for arbitrary elements of HF+(Y, s), so HF+(Y, s) = 0.

2.4.4 The adjunction inequality.

Finally, we state the adjunction inequality for HF+ in the case of zero-surgeries on knots. It holds in
greater generality, but this case is the only one we will need.

Theorem 2.41. Let K be a knot in S3 with Seifert genus g. Then HF+(K0, d) = 0 for d ≥ g.

Proof. See Section 7 of [6].
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2.5 Knot Floer homology.

Let K be an oriented knot in S3. We will define invariants of K, called the knot Floer homology groups
of K, whose constructions are quite similar to those of the Heegaard Floer homology groups defined
above.

2.5.1 Marked and doubly-pointed Heegaard diagrams.

Just as we needed to choose a pointed Heegaard diagram to define Heegaard Floer homology, we need
to choose a marked Heegaard diagram for the knot K in order to define knot Floer homology.

Definition 2.42. Let K be a knot in S3.

(a) A marked Heegaard diagram is a quadruple (Σ,α,β,m), where α = (α1, . . . , αg) and
β = (β1, . . . , βg) are sets of attaching circles like usual and m is a point in βg disjoint from
the α curves.

(b) A Heegaard diagram (Σ,α,β) describes the knot K if the following holds: the manifold
resulting from attaching the α handlebody as usual and then attaching a 2-handle to each
βi, 1 ≤ i ≤ g−1, is S3 \nbK, and βg is a meridian µ for K which intersects only one α curve
(taken by convention to be αg). Another way of stating the first condition is that (Σ,α,β0)
describes S3 \ nbK, where β0 = (β1, . . . , βg−1).

(c) A marked Heegaard diagram for K is a marked diagram (Σ,α,β,m) such that (Σ,α,β)
describes K.

Remark 2.43. If (Σ,α,β) describes K, then its associated 3-manifold must be S3. Indeed, attaching a
two-handle to the meridian of a knot and capping it off with a 3-ball always results in S3.

One way to choose a marked Heegaard diagram for K is to start with a bridge presentation of K:

Definition 2.44. A bridge presentation of a knot K, with g bridges, is a projection of K in which all
crossings take place in g designated “bridge segments” a1, . . . , ag ⊂ K. At each crossing, the bridge
segment ai is required to be the piece crossing under.

A basic result in knot theory ensures that if a knot K has an embedding in S3 which has g maxima
and g minima in the z-direction, then K admits a bridge presentation with g bridges. Practically
speaking, if K is not too complicated, one can start with any projection of K, designate some bridge
segments corresponding to maxima in a particular coordinate direction, and then “unwrap” the rest of
the crossings. Figure 1 illustrates this procedure for the left-handed trefoil. In fact, the procedure for
the (2, 2k+1) torus knot works just as in this figure, and the resulting projection is called the Schubert
normal form of the knot; see [12]. All our examples will be torus knots; the first two will be the trefoil
and the (2, 7) torus knot, and the Heegaard diagrams we will use for these come from Schubert normal
forms.

Now we will describe how to obtain a marked Heegaard diagram from a bridge presentation. Start
by viewing the plane of the projection, plus a point at ∞, as S2. At each bridge segment ai, attach a
1-handle to this S2 at the two endpoints of ai. Think of the 1-handle as going down below the plane.
The result of attaching these g handles is a genus g surface; this will be our Heegaard surface Σ. To
obtain the curve αi, close off ai with an arc inside the added handle. At this point, attaching 2-handles
according to the α curves yields a genus g handlebody. It may be visualized as the space below the plane
of the projection, with g tunnels removed.

Now, to obtain the β curves, first note that K \ {a1 ∪ · · · ∪ ag} consists of g components b1, . . . , bg.
Discard bg. For 1 ≤ i ≤ g − 1, let βi be the boundary of a small tubular neighborhood of bi in Σ.
Gluing in 2-handles according to these β curves produces S3 \ nbK. Indeed, start at a point of a1 and
walk alternately “underground” through the tunnels according to the segments ai and “above ground”
through the β-passageways according to the segments bi. The resulting path traverses the whole of the
knot except for the segment bg. At the endpoints of bg, we may imagine coming out from the tunnels and
passageways. Taking a straight-line path between these two endpoints, above the rest of the crossings,
amounts to traversing the remainder of K.
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Figure 1: Producing a bridge presentation for the left-handed trefoil. The segments between the circles
are the bridge segments.

m

2
α2 α1

β1

β

Figure 2: The resulting Heegaard diagram for the left-handed trefoil.

Finally, let βg be a small circle in Σ around a mouth of the αg-tunnel. The curve βg is a meridian
for K intersecting only αg, and we obtain S3 by performing the remaining gluings. Let m be any point
on βg disjoint from αg. We have informally proven the following proposition:

Proposition 2.45. For any K, there exists a marked Heegaard diagram (Σ,α,β,m) for K.

Figure 2 shows the result of this procedure applied to the left-handed trefoil.
Now, given a marked Heegaard diagram (Σ,α,β,m) for K, one can view all the possible longitudes

for K as curves in Σ, as follows. Push m off βg in one direction to obtain a point w and in the other
direction to obtain a point z. Pick a path λ′ connecting w and z in the complement of the β curves. We
can close off λ′ with a short arc connecting w and z across βg. The resulting closed curve λ is untouched
by the addition of handles according to the α and β0 curves; hence it is a curve in ∂(S

3\nbK) = ∂(nbK).
It intersects the meridian µ = βg of K once, so it is a longitude for K. As usual, the rest of the longitudes
may be obtained from λ by adding copies of µ.

The above discussion also shows how a marked Heegaard diagram for K gives rise to a “two-pointed”
Heegaard diagram (Σ,α,β, w, z) for S3, i.e. a Heegaard diagram for S3 equipped with two basepoints w
and z in the complement of the α and β curves. The one subtlety is the ordering of w and z. To fix which
point is which, note that the (fixed) orientation on K gives rise to an orientation on each longitude λ.
Pick such a λ as in the above paragraph, and relabel w and z if necessary so that the short arc crossing
βg goes from w to z. In this way, w and z are pinned down (up to isotopy in the complement of the α

and β curves).
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x’’ x x’

λ

αg

µ

w z

Figure 3: The region of intersection between λ and µ. The horizontal lines at top and bottom are glued
together.

2.5.2 The knot Floer chain complexes.

Now we will define the knot Floer chain complex CFK∞(S3,K) as well as various subcomplexes and
quotients.

Definition 2.46. Choose a marked Heegaard diagram (Σ,α,β,m) forK with associated doubly-pointed
diagram (Σ,α,β, w, z).

(a) The generators of CFK∞(S3,K) are elements [x, i, j], where x is an intersection point in
Tα ∩ Tβ and i, j ∈ Z.

(b) The differential is given by:

∂[x, i, j] =
∑

{y∈Tα∩Tβ,φ∈π2(x,y)|µ(φ)=1}

#M(φ)[y, i − nw(φ), j − nz(φ)].

Remark 2.47. This definition makes sense for any doubly-pointed Heegaard diagram (Σ,α,β, w, z), not
just those coming from marked diagrams for knots. If we have an arbitrary doubly-pointed diagram, we
will sometimes denote its chain complex as CF∞(Σ,α,β, w, z).

CFK∞(S3,K) trivially has two Z-filtrations given by the i- and j-indices; these are true filtrations
since if φ admits a holomorphic representative then nw(φ) and nz(φ) are nonnegative. Furthermore, a
key observation is that it breaks into subcomplexes according to Spinc structures on the zero-surgery
K0. We first need to discuss these.

Let K0 be the zero-surgery of K, i.e. the manifold obtained from S3 by surgery on K with its Seifert
framing. The Mayer-Vietoris sequence tells us that H1(K0) = Z, so there are Z worth of Spinc structures
on K0. Choose a Seifert surface F for K, and let F̂ be the closed surface in K0 obtained by capping off
F . The bijection Spinc(K0) → Z can be realized by sending t ∈ Spinc(K0) to

1
2 〈c1(t), [F̂ ]〉. This bijection

is independent of F ; write tm for the Spinc structure on K0 such that 1
2 〈c1(tm), [F̂ ]〉 = m. In particular,

t0 is the unique Spinc structure with c1(t0) = 0.
Let λ be the Seifert longitude for K, viewed as a curve in Σ intersecting µ = βg once and disjoint

from all the other β curves. Define γg := λ, and for 1 ≤ i ≤ g − 1, let γi be a small isotopic translate
of βi intersecting βi in two points with opposite sign. Then γ := (γ1, . . . , γg) is a set of attaching circles
in Σ. Furthermore, the Heegaard diagram (Σ,α,γ) describes K0, and we can choose w as a basepoint
(z would work equally well, since there is now no βg blocking an isotopy of the two points). Like usual,
we have a map sw : Tα ∩ Tγ → Spinc(K0). In this context, sw will always mean this map instead of the
trivial map from Tα ∩ Tβ to Spinc(S3).

We can use the map sw : Tα ∩ Tγ → Spinc(K0) to define a map s : Tα ∩ Tβ → Spinc(K0). Strictly
speaking, s depends on the marked point m in the given marked Heegaard diagram for K, but since
we will not need to vary this marked point, and since it will be useful to have m available as an index,
we suppress this dependence in our notation. After isotopy, we may assume that near the intersection
of λ = γg and µ = βg, λ winds once around µ, intersects, and then winds back. For an illustration,
see Figure 3, which replicates Figure 3 of [5]. The point of intersection x ∈ βg ∩ αg corresponds to two
closest points x′ and x′′ ∈ γg ∩ αg. We may also assume that λ does not contain the marked point m.
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Definition 2.48. Let the triple (Σ,α,β,γ) be chosen as above.

(a) s : Tα ∩ Tβ → Spinc(K0) sends x ∈ Tα ∩ Tβ to the Spinc-structure sw(x
′) on K0 asso-

ciated to x′. Here x′ denotes x with the βg-component x replaced by the point x′ defined
above.

(b) Let [x, i, j] ∈ CFK∞(S3,K). Then σ[x, i, j] is sm(x) + (i− j)PD[µ].

(c) For t ∈ Spinc(K0), CFK
∞(S3,K, t) ⊂ CFK∞(S3,K) is spanned by those generators

[x, i, j] with σ[x, i, j] = t.

Remark 2.49. In part (a) of Definition 2.48, note that x′′ would work just as well. Indeed, let x′′ denote
x with x replaced by x′′. There is an obvious domain representing a Whitney disk connecting x′ to x′′

(or vice-versa), so ǫ(x′,x′′) = 0 and sw(x
′) = sw(x

′′). Thus, we do not need a way of distinguishing
between x′ and x′′. Also note that, by isotopy, we could use sz rather than sw to define s.

Since Spinc structures on K0 are rather abstract entities, it will be useful to have a reformulation of
Spinc(K0)-differences between elements of Tα ∩ Tβ in terms of something more concrete. To this end,
the following lemma is very useful:

Lemma 2.50. Suppose x,y ∈ Tα ∩ Tβ. Let φ ∈ π2(x,y). Then s(x)− s(y) = (nz(φ)−nw(φ)) ·PD[µ].

Proof. See Lemma 2.5 of [5].

Proposition 2.51. CFK∞(S3,K, t) is a filtered subcomplex of CFK∞(S3,K), and hence

CFK∞(S3,K) = ⊕t∈Spinc(K0)CFK
∞(S3,K, t)

as a filtered complex.

Proof. Immediate from Lemma 2.50 and the formula for the differential in CFK∞(S3,K, t).

Remark 2.52. We will rarely need to consider the full sum ⊕t∈Spinc(K0)CFK
∞(S3,K, t). Thus, at this

point we will change notation. CFK∞(S3,K) will no longer refer to this sum; instead, it will be
shorthand for CFK∞(S3,K, t0). Also, if m ∈ Z, we will often write CFK∞(S3,K,m) in place of
CFK∞(S3,K, tm).

Remark 2.53. Now that we are working with the fixed Spinc structure t0, the equation σ([x, i, j]) =
s(x) + (i − j)PD[µ] = t0 uniquely determines j once x and i are known. Thus, the generators [x, i, j]
of CFK∞(S3,K) correspond bijectively to generators [x, i] of CF∞(S3). In fact an examination of the
differential shows CFK∞(S3,K) and CF∞(S3) are isomorphic as complexes. The effect of the extra
index j attached to generators of CFK∞(S3,K) is to give this complex another Z-filtration. Also, since
CF∞(S3) is absolutely Z-graded, we get an absolute Z-grading on CFK∞(S3,K). We will sometimes
use the term “homological grading” as a synonym for this absolute grading.

From CFK∞(S3,K), which now means CFK∞(S3,K, t0), we will define associated complexes

CFK{i<0}(S3,K), CFK{i≥0}(S3,K), CFK{i=0}(S3,K), and ĈFK(S3,K).

Definition 2.54. Let K be as above.

(a) CFK{i<0}(S3,K) is the subcomplex of CFK∞(S3,K) spanned by elements [x, i, j] with
i < 0.

(b) CFK{i≥0}(S3,K) is the quotient of CFK∞(S3,K) by CFK{i<0}(S3,K).

(c) CFK{i=0}(S3,K) is the subcomplex of CFK{i≥0}(S3,K) spanned by elements with i = 0.

Remark 2.55. Just as in the ∞ case, CFK{i=0}(S3,K) is isomorphic to ĈF (S3). As before, the extra

index j gives this complex a Z-filtration, and the absolute Z-grading on ĈF (S3) gives an absolute
Z-grading on CFK{i=0}(S3,K).

Definition 2.56. ĈFK(S3,K) is the graded complex associated to CFK{i=0}(S3,K) as a Z-filtered

complex. The piece at filtration level d is denoted ĈFK(S3,K, d), with homology ĤFK(S3,K, d).
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It might seem logical to use a name like ĈFK
{j=d}

(S3,K) or even CFK{i=0,j=d}(S3,K) for the

piece of the complex at filtration level d. However, the convention is to use the name ĈFK(S3,K, d).
This usage should not be confused with the earlier CFK∞(S3,K,m), where m ∈ Z. Whereas generators

[x, i, j] of this latter group satisfy σ([x, i, j]) = tm, generators [x, 0, d] of ĈFK(S3,K, d) always satisfy
σ([x, 0, d]) = t0.

2.5.3 Conjugation symmetry.

ĤFK is symmetric under conjugation of Spinc structures:

Proposition 2.57. For m ∈ Z and d ∈ Z, we have the conjugation symmetry

ĤFKd(S
3,K,m) = ĤFKd−2m(S3,K,−m),

where the subscripts denote absolute degrees.

Proof. See Proposition 3.10 of [5].

2.6 Holomorphic triangles and cobordisms.

Now that we have defined Heegaard Floer homology and knot Floer homology, we turn to maps between
Heegaard Floer groups defined by counting holomorphic triangles in Heegaard triples. Such maps may
be interpreted as maps induced from surgery cobordisms. The maps induced by cobordisms between
rational homology three-spheres behave predictably with respect to the absolute Q-grading.

2.6.1 Heegaard triples.

Definition 2.58. A Heegaard triple is a triple (Σ,α,β,γ), where Σ is an oriented genus-g surface and
α,β,γ are three sets of attaching circles in Σ. A pointed Heegaard triple (Σ,α,β,γ, z) is a Heegaard
triple equipped with a basepoint z disjoint from all attaching circles.

Suppose (Σ,α,β,γ) is a Heegaard triple. There are three ways to choose two out of the three sets of
circles {α,β,γ} and glue handlebodies along them to produce a 3-manifold. We will call the resulting
3-manifolds Yαβ, Yβγ , and Yαγ . In fact, whenever we have any Heegaard tuple, analogous notation
will be used. Thus, for instance, if (Σ,α,β,γ, δ) is a Heegaard quadruple, then there are six naturally
associated 3-manifolds, and they will be denoted Yαβ, Yαγ , Yαδ, Yβγ , Yβδ, and Yγδ.

Starting with a pointed Heegaard triple (Σ,α,β,γ, z), we want to produce a map ĤF (Yαβ) ⊗

ĤF (Yβγ) → ĤF (Yαγ). The map will count holomorphic triangles in Symg Σ. Inside Symg Σ, we
now have three tori, denoted Tα,Tβ, and Tγ .

Definition 2.59. Let ∆ be the standard 2-simplex with vertices vα, vβ , and vγ (arranged clockwise)
and edges eα, eβ , and eγ opposite them. Let x ∈ Tα ∩ Tβ , y ∈ Tβ ∩ Tγ , and z ∈ Tα ∩ Tγ .

(a) A Whitney triangle connecting x, y, and z is a map ∆
ψ
→ Symg Σ such that ψ(vγ) = x,

ψ(vα) = y, ψ(vβ) = z, ψ(eγ) ⊂ Tα ∩ Tβ , ψ(eα) ⊂ Tβ ∩ Tγ , and ψ(eβ) ⊂ Tα ∩ Tγ .

(b) π2(x,y, z) is the set of homotopy classes of Whitney triangles connecting x, y, and z.

(c) If ψ ∈ π2(x,y, z), then M(ψ) is the moduli space of holomorphic representatives of ψ; its
Maslov index is µ(ψ), and its signed intersection with Vz is nz(ψ).

Remark 2.60. If ψ ∈ π2(x,y, z), we can define the domain D(ψ) of ψ analogously to the domain of a
Whitney disk. It is a formal linear combination of the components of Σ \ (α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg ∪
γ1 ∪ · · · ∪ γg).

We can now define the map associated to a Heegaard triple:
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Definition 2.61. Let (Σ,α,β,γ, z) be a pointed Heegaard triple. Define a map F(Σ,α,β,γ,z) from

ĈF (Yαβ)⊗Z ĈF (Yβγ) to ĈF (Yαγ) as follows: if x ∈ Tα ∩ Tβ and y ∈ Tβ ∩ Tγ , then

F̂(Σ,α,β,γ,z)(x⊗ y) =
∑

{z∈Tα∩Tγ ,ψ∈π2(x,y,z)|µ(ψ)=0,nz(ψ)=0}

#(M(ψ)) · z.

It is a nontrivial result that F(Σ,α,β,γ,z) is a chain map, with respect to the usual differential on the
tensor product of complexes, and hence induces a map on homology. There is an analogous map from
CF+(Yαβ)⊗Z[U ] CF

+(Yβγ) to CF
+(Yαγ) defined by

F+
(Σ,α,β,γ,z)([x, i]⊗ [y, j]) =

∑

{z∈Tα∩Tγ ,ψ∈π2(x,y,z)|µ(ψ)=0}

#(M(ψ)) · [z, i+ j − nz(ψ)].

This map also induces a map on homology.

2.6.2 Surgery cobordisms.

We are interested primarily in surgeries on knots in S3. However, when discussing the surgery exact
triangle in Section 4, we will want to consider further surgeries on knots in these S3-surgeries. Thus, in
this section, we will let K be a null-homologous knot in an arbitrary (closed, oriented) 3-manifold Y .

Suppose λ is a longitude for K having intersection number ±1 with [µ] inside ∂(nbK); represent λ
by an embedded circle in ∂(nbK). One can define a cobordism W from Y to the surgered manifold Kλ

by starting with Y × [0, 1] and attaching a two-handle H = D2 × D2 to Y × {1}. The two-handle is
attached as follows: the attaching circle S1 × {0} is glued to K, and the rest of S1 ×D2 fills out nbK
in such a way that S1 × {1} is glued to λ. The operation of gluing the 2-handle replaces the boundary
component Y × {1} with Kλ: points in the interior of nbK do not contribute to the boundary of W ,
and “new” boundary points come from the D2 ×S1 component of ∂H . Because of how we glued H , the
resulting boundary component of W is exactly Kλ.

Orient W so that it is a cobordism from Y to Kλ. In general, any cobordism between 3-manifolds Y1
and Y2 should induce a map on Heegaard Floer homology. We will not define this induced map for all
cobordisms; we will only define it for knot surgery cobordisms such as W . To do so, we will construct a
Heegaard triple from the surgery data, and then we will make use of the constructions from Section 2.6.1.

Let (Σ,α,β) be a Heegaard diagram describing K as in Section 2.5.1. The longitude λ may be
realized as a closed curve in Σ; call it γg. For 1 ≤ i ≤ g − 1, let γi be an isotopic translate of βi,
intersecting βi in two points with opposite signs. Then γ := (γ1, . . . , γg) is a set of attaching circles in
Σ. Our Heegaard triple is defined to be (Σ,α,β,γ).

Consider the manifolds Yαβ, Yβγ , and Yαγ associated to this triple. Clearly Yαβ is just S3. Also,
Yαγ is the surgered manifold Kλ. Indeed, the difference between Yαβ and Yαγ is that we removed a
3-ball and the 2-handle corresponding to βg from Yαβ, amounting to the removal of nbK from S3, and
glued back a solid torus in such a way that γg = λ bounds a disk. Finally, Yβγ is just #g−1(S2 × S1).
This final identification holds because, first of all, βi only intersects γi and no other γ curve, so we can
separate the situation into g connected summands. Second of all, in the summands for 1 ≤ i ≤ g − 1,
the intersection pattern between βi and γi looks just like the standard admissible Heegaard diagram for
S2 × S1, while in the gth summand it looks like the standard diagram for S3.

For 1 ≤ i ≤ g − 1, label the two points of βi ∩ γi as y
±
i . More precisely, label them so that the two

obvious ways of travelling from y−i to y+i along βi and then back to y−i along γi each produce a circle

which bounds an oriented disk agreeing with the orientation of Σ. This choice ensures that in ĈF of the
S2 × S1 summand corresponding to βi and γi, both differentials map y−i to y+i , so we have ∂y+i = 0.

Let yg be the unique intersection point between βg and γg. Define Θβγ to be {y+1 , . . . , y
+
g−1, yg}, an

element of Tβ ∩ Tγ . We claim that ∂Θβγ = 0 in ĈF (#g−1(S2 × S1)). This fact is a consequence of the
following proposition from [6]:

Proposition 2.62. If Y = Y1#Y2, then ĈF (Y ) = ĈF (Y1)⊗Z ĈF (Y2).

Proof. See Proposition 6.1 of [6].
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Using induction, we see that we can write Θβγ as y+1 ⊗ · · · ⊗ y+g−1 ⊗ yg under the appropriate

identification, so ∂Θβγ = [(∂y+1 )⊗· · ·⊗y+g−1⊗yg]+. . .+[y+1 ⊗· · ·⊗(∂y+g−1)⊗yg]+[y+1 ⊗· · ·⊗y+g−1⊗(∂yg)].

But ∂yg = 0 and ∂y+i = 0 for 1 ≤ i ≤ g − 1, so ∂Θβγ = 0. Hence Θβγ represents a homology class in

ĤF (Yβγ).
There is an obvious analogue of the above computation for HF+: since the differential of [Θβγ , 0] in

CF+(Yβγ) counts the same disks as the differential of Θβγ in ĈF (Yβγ), it is also zero. Hence [Θβγ , 0]
represents a homology class in HF+(Yβγ).

We can plug these distinguished elements of ĤF (Yβγ) and HF+(Yβγ) into the maps defined in
Section 2.6.1 to define the maps induced by the surgery cobordisms:

Definition 2.63. Let W be the surgery cobordism from Y to Kλ.

(a) The map ΦW : ĤF (Y ) → ĤF (Kλ) sends x ∈ Tα ∩ Tβ to F̂(Σ,α,β,γ,z)(x⊗Θβγ).

(b) The map ΦW : HF+(Y ) → HF+(Kλ) sends [x, i] ∈ (Tα ∩ Tβ)×Z≥0 to F+
(Σ,α,β,γ,z)([x, i]⊗

[Θβγ , 0]).

Note that to avoid a cluttering of notation, we will use ΦW to denote both the map on ĤF and the map
on HF+. There are analogous maps on HF− and HF∞.

2.6.3 Spinc structures on cobordisms.

Here we cite without proof the results needed concerning Spinc structures on cobordisms. Let W : Y1 →
Y2 be a cobordism; there is an induced map ΦW on Heegaard Floer homology. We have only defined
ΦW when W is a knot surgery cobordism, and we will only need this case, but the first proposition in
this section holds for any cobordism.

The key fact is that ΦW splits up as a sum of maps ΦW,r according to Spinc structures r on W .
Unfortunately, the interpretation of Spinc structures in terms of nowhere-vanishing vector fields only
works for 3-manifolds. Rather than defining Spinc structures on 4-manifolds, we simply state the relevant
proposition without proof, in the case where Y1 and Y2 are rational homology three-spheres.

Proposition 2.64. Suppose W is a cobordism from Y1 to Y2, where Y1 and Y2 are rational homology
three-spheres.

(a) There is a map c1 : Spinc(W ) → H2(W ) called the first Chern class. It gives a bijective
correspondence between Spinc structures on W and {α ∈ H2(W )|α(x) = x · x mod 2 ∀x ∈
H2(W )}, where · denotes the intersection pairing on H2(W ).

(b) There is a restriction map which associates to r ∈ Spinc(W ) a Spinc structure r|Y1 on Y1
and a Spinc structure r|Y2 on Y2.

(c) The map ΦW : HF ◦(Y1) → HF ◦(Y2) is a sum, over all r ∈ Spinc(W ), of maps ΦW,r :

HF ◦(Y1, s1) → HF ◦(Y2, s2), where si = r|Yi
and HF ◦ stands for ĤF or HF+.

(d) For r ∈ Spinc(W ), the map ΦW,r shifts the absolute Q-grading by c1(r)
2−2χ(W )−3σ(W )

4 ,
where χ(W ) is the Euler characteristic of W and σ(W ) is the signature of the intersection
pairing on H2(W ).

Remark 2.65. The intersection pairing on H2(W ) is a well-defined integer-valued pairing. If x, y ∈
H2(W ), then PD[x] and PD[y] are in H2(W,∂W ). Their cup product PD[x]∪PD[y] is in H4(W,∂W ),
so it can be paired with the fundamental class [W ] ∈ H4(W,∂W ) to produce an integer.

The cup product pairing on H2(W ), on the other hand, takes some care to define. Consider the
inclusion of pairs j : (W, ∅) → (W,∂W ). Consideration of the exact cohomology sequence of (W,∂W )

with Q coefficients shows that H2(W,∂W ;Q)
j∗

→ H2(W ;Q) is an isomorphism. Now, if a ∈ H2(W ;Q),
we have (j∗)−1(a) ∈ H2(W,∂W ;Q). For a and b in H2(W ;Q), we may define their cup product pairing
to be ((j∗)−1(a) ∪ (j∗)−1(b))[W ]. The result is a rational number, not an integer. In particular, c1(r)

2

in the above proposition may not be an integer.
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Theorem 2.66. Let W : Y1 → Y2 be a cobordism and let r ∈ Spinc(W ). There is a commutative diagram

0 // HF−(Y1, r|Y1)
//

ΦW,r

��

HF∞(Y1, r|Y1) //

ΦW,r

��

HF+(Y1, r|Y1)
//

ΦW,r

��

0

0 // HF−(Y2, r|Y2)
// HF∞(Y2, r|Y2) // HF+(Y2, r|Y2)

// 0

where the horizontal sequences come from Theorem 2.35.

For surgery cobordisms, we can describe the splitting ΦW =
∑

r
ΦW,r in terms of holomorphic trian-

gles.

Proposition 2.67. Suppose (Σ,α,β,γ, z) is the Heegaard triple associated to λ-framed surgery on a
knot K in Y , and let W be the surgery cobordism from Y to Kλ.

(a) For x ∈ Tα ∩ Tβ and y ∈ Tα ∩ Tγ , π2(x,Θβγ ,y) is nonempty if and only if there exists
r ∈ Spinc(W ) such that r|Y = sz(x) and r|Kλ

= sz(y). In such a situation, we will say sz(x)
is cobordant to sz(y).

(b) If π2(x,Θβγ ,y) is nonempty, there is a natural mapping π2(x,Θβγ ,y) → Spinc(W ),
denoted ψ 7→ sz(ψ), such that for all ψ we have sz(ψ)|Y = sz(x) and sz(ψ)|Kλ

= sz(y).

(c)

ΦW,r(x) =
∑

{y∈Tα∩Tγ ,ψ∈π2(x,Θβγ ,y)|µ(ψ)=0,nz(ψ)=0,sz(ψ)=r}

#(M(ψ)) · y.

2.6.4 Cobordisms from S3 to Kp.

WhenK is a knot in S3 and λ = λSeif+pµ, where p 6= 0, the surgery cobordismWp satisfiesH2(Wp) = Z.
To find a generator for this group, choose a Seifert surface F for K. View it as living inside S3 × I such
that ∂F ⊂ S3 × {1}. Cap it off inside the added 2-handle D2 × D2 to obtain a closed surface S in
Wp. The homology class [S] generates H2(Wp), and it satisfies [S] · [S] = −|p|. Let [S]∗ ∈ H2(Wp) ≃ Z
denote the element dual to [S], i.e. the element such that [S]∗([S]) = +1. Then [S]∗ generates H2(Wp).
Furthermore, by Proposition 2.64, Spinc structures on Wp correspond to those elements k[S]∗ of H2(W )
satisfying k[S]∗(x) = x · x mod 2 for all x ∈ H2(W ). But this equation amounts to requiring that
k = k[S]∗([S]) = [S] · [S] = −|p| mod 2. Hence, if p is even, then Spinc structures on Wp correspond to
{(2k)[S]∗|k ∈ Z}, and if p is odd, Spinc structures on Wp correspond to {(2k + 1)[S]∗|k ∈ Z}. Either
way, if r is a Spinc structure on Wp with c1(r) = k[S]∗, then the quantity 〈c1(r), [S]〉 − p = k− p is even.
For m ∈ Z, define rm to be the Spinc structure on Wp such that 〈c1(rm), [S]〉 − p = 2m.

Proposition 2.68. For m,m′ ∈ Z, we have rm|Kp
= rm′ |Kp

if and only if m ≡ m′ mod |p|.

We already know (from the Mayer-Vietoris sequence) that there are |p| distinct Spinc structures on
Kp, and now Proposition 2.68 gives us a way to label them. Namely, for [m] ∈ Z/p, let s[m] := rm|Kp

.

We will often refer to s[m] simply as [m]; thus, we have the formula ĤF (Kp) =
∑

[m]∈Z/p ĤF (Kp, [m]).

In particular, note that all Spinc structures on Kp are cobordant to the unique Spinc structure on S3.

Finally, as an addendum to Remark 2.65, note that H2(Wp)
j∗
→ H2(Wp, ∂Wp) is multiplication by

±p. Correspondingly, H2(Wp, ∂Wp)
j∗

→ H2(Wp) is also multiplication by ±p. From this formula, we can
see explicitly that j∗ is an isomorphism with Q coefficients. We can also use it to compute (c1(rm))2,
which will be useful in future arguments:

Proposition 2.69. Let rm be the Spinc structure on Wp defined above. Then

(c1(rm))2 = −
1

p
(2m+ p)2.
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Proof. We first need to know what ([S]∗)2 is. By Remark 2.65, we look at (j∗)−1([S]∗). This element is
some rational multiple of the generator PD[S] of H2(W,∂W ;Q). Above, we said that j∗ was multipli-
cation by p. In other words, it sends the generator PD[S] of H2(W,∂W ) to ±p times the generator [S]∗

of H2(W ). Thus, (j∗)−1([S]∗) = ± 1
pPD[S]. We can now compute:

([S]∗)2 =
1

p2
(PD[S] ∪ PD[S])[W ]

=
1

p2
[S] · [S]

= −
1

p
.

Thus, c1(sw(ψ))
2 = ((2m+ p)[S]∗)2 = − 1

p (2m+ p)2.

2.6.5 Cobordisms from Kp to S3.

Inside Kp = (S3 \ nbK) ∪∂(nbK) (D
2 × S1), there is a knot K ′ given by {0} × S1. If µ denotes the

meridian of K, then µ is a longitude for K ′. Performing µ-framed surgery on K ′ results in S3. We thus
have a surgery cobordism from Kp to S3. This cobordism will come up several times in the rest of the
paper; for notational convenience, we will just call it W and suppress the dependence on p.

On the other hand, by basic Morse theory, one can see that W is actually the same four-manifold
as Wp. Thus we may apply the results of Section 2.6.5 to W . As before, [S] is a generator of H2(W ),
and [S] · [S] = −p. The Spinc structures on W are the rm defined in Section 2.6.4. They satisfy
〈c1(rm), [S]〉 − p = 2m, and we have rm|Kp

= [m].

2.6.6 Area filtrations.

Because Heegaard triples play an important role in defining area filtrations on Heegaard Floer homology
groups, and because area filtrations will be relevant in both Section 3 and Section 4, we discuss these
filtrations here.

The most basic type of area filtration comes from areas of disks in an ordinary Heegaard diagram.
Let Y be a 3-manifold, and let (Σ,α,β, z) be a Heegaard diagram for Y . For the sake of simplicity,
assume Y is an integer homology 3-sphere (in fact, for our applications, we will only need to consider
Y = S3). Suppose we have an area form on Σ such that all periodic domains have zero area. Choose

x0 ∈ Tα ∩ Tβ. We can define a filtration on ĈF (Y ) as follows: for x ∈ Tα ∩ Tβ , choose φ ∈ π2(x0,x)
with nz(φ) = 0 (such φ exists since there is a unique Spinc structure on Y , so all ǫ-differences are 0).
Define

F(x) = −A(D(φ)),

where A denotes the signed area of a domain in Σ. The function F is well-defined since if φ′ is another
element of π2(x0,x) with nz(φ) = 0, then the domains of φ and φ′ differ by a periodic domain P , and
A(P ) = 0 by assumption.

For F to be a filtration on the chain complex ĈF (Y ), we want to ensure the differential does not
increase F . Suppose x ∈ Tα ∩ Tβ and φ ∈ π2(x0,x) with nz(φ) = 0. If y ∈ Tα ∩ Tβ , and φ

′ ∈ π2(x,y)
represents a differential from x to y, then φ∗φ′ ∈ π2(x0,y), and nz(φ∗φ′) = 0, so we can use the domain
of φ ∗φ′ to compute F(y). But D(φ ∗φ′) = D(φ) +D(φ′), so −A(D(φ ∗φ′)) = −A(D(φ))−A(D(φ′)) =
F(x)−A(D(φ′)) < F(x) since domains of disks representing differentials have all nonnegative coefficients.
Thus, the differential decreases F .

Now suppose we have a Heegaard triple (Σ,α,β,γ, z), where Σ is again equipped with an area form
such that all periodic domains have zero area. We require that either Yαβ or Yαγ is a homology 3-
sphere; it follows that the α, β, and γ curves span H1(Σ). We will also restrict attention to the case
when Yβγ = #g−1(S2 × S1), which is always true when the Heegaard triple arises from a knot surgery.

As above, we have an element Θβγ in ĈF (Yβγ) which represents an element of homology.
Given this data, a construction analogous to the one above, using holomorphic triangles rather than

holomorphic disks, defines an area filtration on Yαγ . Choose x0 ∈ Tα ∩ Tβ. For y ∈ Tα ∩ Tγ , pick
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ψ ∈ π2(x0,Θβγ ,y) with nz(ψ) = 0. Such ψ exists since the α, β, and γ curves span H1(Σ). Indeed, we
may construct the domain of ψ as in Section 2.2.5. We may now define

F(y) = −A(D(ψ)).

Again, F is well-defined since all periodic domains have zero area. To see that the differential on
ĈF (Yαγ) decreases F , let y,y′ ∈ Tα ∩ Tγ and suppose φ ∈ π2(y,y

′) represents a differential. Choose
ψ ∈ π2(x0,Θβγ ,y) with nz(ψ) = 0. Then ψ ∗φ is an element of π2(x0,Θβγ ,y

′) satisfying nz(ψ ∗φ) = 0,
so ψ ∗ φ may be used to compute F(y′). But then F(y′) = F(y)−A(D(φ)) < F(y).

Finally, in the proof of the exact triangle in Section 4, we will consider a third filtration using squares.
This time, we start with a Heegaard quadruple (Σ,α,β,γ, δ, z) with an area form on Σ. We require that
all periodic domains have zero area and that one of the three manifolds Yαβ, Yαγ , or Yαδ is an integer
homology 3-sphere. We will also assume that both Yβγ and Yγδ are #g−1(S2 × S1); we have elements

Θβγ ∈ ĈF (Yβγ) and Θγδ ∈ ĈF (Yγδ) which represent elements of homology. Choose x0 ∈ Tα ∩ Tβ .
For y ∈ Tα ∩ Tδ, pick ϕ ∈ π2(x0,Θβγ ,Θγ,δ,y), the set of homotopy classes of maps of squares (defined
analogously to disks and triangles), with nz(ϕ) = 0. Such ϕ exists as long as π2(x0,Θβγ ,Θγ,δ,y) is
nonempty, which is true since the α, β, γ, and δ curves span H1(Σ). Define

F(y) = −A(D(ϕ)).

The same arguments as before show that F is a well-defined filtration on ĈF (Yαδ).

3 Computing the Heegaard Floer homology of large integer

surgeries on knots in S3.

3.1 Introduction

The purpose of this section will be to answer the following question: given a knot K in S3, how does
one compute HF+(Kp) when p is large in absolute value? We will give an answer in terms of the knot
Floer chain complexes of K. In the spirit of Section 2.5.2, we make the following definition:

Definition 3.1. Let K be a knot in S3 and let n be an integer. The complex CFK{i≥0,j≥n}(S3,K) is
the quotient of CFK∞(S3,K) by the subcomplex generated by elements [x, i, j] with i < 0 and j < n.

Remark 3.2. From now on, we will not explicitly spell out the definitions of such quotients or subcom-
plexes of CFK∞(S3,K). They are all analogous to this one.

Theorem 3.3. Let K be a knot in S3. Let g be its genus. There exists an integer N such that for all
p ≥ N , the following equation holds:

HF+
l (K−p, [m]) ≃




H
l−

−(2m+p)2+p

4p

(CFK{i≥0,j≥−m}(S3,K)) |m| ≤ g,

HF+

l−−(2m+p)2+p

4p

(S3) otherwise,

for [m] ∈ Z/p. The subscripts denote absolute Q-gradings.

Theorem 3.3 is a relatively straightforward consequence of Theorem 3.4 below, which identifies all
variants of HF ◦(K−p, [m]) but does not explicitly mention absolute gradings. Theorem 3.4 uses a map
Φ : CFK∞(S3,K) → CF∞(K−p), which we now define. Pick a Heegaard triple (Σ,α,β,γ) associated
to the surgery data (K,λp) as in Section 2.6.2. More precisely, choose λp to follow λSeif closely except
near µ = βg and then to wind tightly p times around µ, intersecting somewhere in the middle (after
about p/2 winds). Mark a point m ∈ βg; then (Σ,α,β,m) is a marked Heegaard diagram for K, and
there are associated basepoints w and z. For a generator [x, i, j] of CFK∞(S3,K), define

Φ([x, i, j]) =
∑

{y∈Tα∩Tγ ,ψ∈π2x,Θβγ ,y|µ(ψ)=0,nw(ψ)−nz(ψ)=i−j}

#M(ψ)[x, i− nw(ψ)].
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Theorem 3.4. Fix m ∈ Z. Suppose p > 0 is very large relative to m. The map Φ, and appropriate
restrictions, fit into the following two diagrams, in which the unlabelled horizontal maps are the standard
inclusions/projections and each vertical map is an isomorphism of chain complexes:

0 // CFK{i<0 or j<0}(S3,K,m)

Φ

��

// CFK∞(S3,K,m)

Φ

��

// CFK{i≥0,j≥0}(S3,K,m)

Φ

��

// 0

0 // CF−(K−p, [m]) // CF∞(K−p, [m]) // CF+(K−p, [m]) // 0

0 // CFK{min(i,j)=0}(S3,K,m)

Φ

��

// CFK{i≥0,j≥0}(S3,K,m)

Φ

��

U // CFK{i≥0,j≥0}(S3,K,m)

Φ

��

// 0

0 // ĈF (K−p, [m]) // CF+(K−p, [m])
U // CF+(K−p, [m]) // 0

In the bottom diagram, the map U : CFK{i≥0,j≥0}(S3,K,m) → CFK{i≥0,j≥0}(S3,K,m) sends a gen-
erator [x, i, j] to [x, i− 1, j − 1].

We have an analogous theorem for large positive surgeries. To state it, we first define a map Ψ
from CF∞(Kp, [m]) to CFK∞(S3,K,m). Changing notation from above, let (Σ,α,γ,β) represent the
surgery data (K,λ−p). Now m is a marked point in γg, and (Σ,α,β,γ) is a Heegaard triple for the
cobordism W from K−p to S3. If [x, i] is a generator for CF∞(Kp, [m]), where x ∈ Tα ∩ Tβ , then

Ψ([x, i]) =
∑

{y∈Tα∩Tγ ,ψ∈π2(x,Θβγ ,y)|µ(ψ)=0, 12 〈c1(s(y)),[F̂ ]〉+nw(ψ)−nz(ψ)=m}

#M(ψ) · [y, i−nw(ψ), j−nz(ψ)].

Theorem 3.5. Fix m ∈ Z. Suppose p > 0 is very large relative to m. The map Ψ, and appropriate
restrictions, fit into the following two diagrams, in which the unlabelled horizontal maps are the standard
inclusions/projections and each vertical map is an isomorphism of chain complexes:

0 // CF−(Kp, [m]) //

Ψ

��

CF∞(Kp, [m]) //

Ψ

��

CF+(Kp, [m]) //

Ψ

��

0

0 // CFK{i<0,j<0}(S3,K,m) // CFK∞(S3,K,m) // CFK{i≥0 or j≥0}(S3,K,m) // 0

0 // ĈF (Kp, [m])

Ψ

��

// CF+(Kp, [m])
U //

Ψ

��

CF+(Kp, [m]) //

Ψ

��

0

0 // CFK{max(i,j)=0}(S3,K,m) // CFK{i≥0 or j≥0}(S3,K,m)
U // CFK{i≥0 or j≥0}(S3,K,m) // 0

Theorem 3.4 and Theorem 3.3 will be proved in Section 3.6; Theorem 3.5 is analogous.
As these theorems show, the question of how to compute CFK∞(S3,K) is crucial for computing the

Heegaard Floer homology of large surgeries. In what follows, we outline an algorithm for performing the
computation of CFK∞(S3,K). We then carry it out explicitly in a few concrete examples.

3.2 Generators of CFK∞

The first task will be to determine the generators of CFK∞(S3,K). Recall that an element [x, i, j],
where x ∈ Tα ∩ Tβ and i, j ∈ Z, represents a generator of CFK∞(S3,K) precisely when σ([x, i, j]) =
s(x) + (i − j)PD[µ] = t0. In particular, for elements with i = 0, the index j is determined by x, as a
result of the equation jPD[µ] = s(x)− t0. Unfortunately, from this equation it is hard to see an explicit
formula for j given x. Following [13], we will discuss an algorithm for computing j which is based on
the Fox calculus.

For x ∈ Tα ∩ Tβ , let j(x) be the unique integer such that σ([x, 0, j(x)]) = t0; in other words,

s(x)− j(x)PD[µ] = t0. (2)
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Figure 4: A grid representing the generators of CFK∞(S3,K), where K is the (3, 4) torus knot.

We may list the generators of CFK{i=0}(S3,K): they are triples of the form [x, 0, j(x)], where x ∈
Tα ∩ Tβ . Applying the automorphism U , we obtain the following characterization of CFK∞(S3,K) as
a group:

Proposition 3.6. Let K be a knot in S3. Without regard to differentials (i.e. as an abelian group),

CFK∞(S3,K) =
⊕

x∈Tα∩Tβ ,i∈Z

Z · [x, i, i+ j(x)].

A good pictoral way to represent CFK∞(S3,K) is by drawing a grid. The horizontal axis is indexed
by i, and the vertical axis is indexed by j. For each intersection point x ∈ Tα ∩ Tβ , mark the points on
the line {(i, i + j(x))|i ∈ Z}. Then, at a point (i, j) on the grid, place a number indicating how many
times that point has been marked. Figure 4 shows this grid in the example of the (3, 4) torus knot.

We now turn to the issue of computing j(x), given x ∈ Tα ∩ Tβ . For this, we will use Fox calculus.
We will describe an algorithm for attaching an integer A(x) to each intersection point x. The letter A
has been chosen since the Fox calculus techniques involved in computing A(x) are identical to those used
to compute the Alexander polynomial of K; we will call A(x) the Alexander grading of x. We will then
show (Theorem 3.9) that, in fact, we have A(x) = j(x).

3.2.1 Fox calculus algorithm for computing Alexander gradings.

Choose a marked Heegaard diagram (Σ,α,β,m) for K coming from a bridge presentation of K as in
Section 2.5.1. Pick arbitrary orientations of β1, . . . , βg. Orient the α curves such that for each βi,
1 ≤ i ≤ g − 1, the sum of the intersection numbers

∑
j βi · αj is zero, and such that the short arc in αi

connects w to z (rather than z to w). While this may not be possible in an arbitrary Heegaard diagram,
it is clear from the form of the β curves that it can be done when the diagram comes from a bridge
presentation. Choose a “starting point” Qi on each βi, away from intersections with the α curves. For a
fixed j, the curve αj intersects the β curves in a number of points. Call these points xj,1, xj,2, xj,3, . . ..
The second index here represents an arbitrary enumeration; it is not related to the index of any β curve.

For each βi, we will define a word wi in the formal letters αj and their formal inverses. Begin at
the starting point Qi and travel along βi in the direction of the chosen orientation. Upon reaching an
intersection point of βi with a curve αj , add the letter αj to the right side of the word if βi crosses αj
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from right to left, and add α−1
j if βi crosses from left to right. End the process after traversing βi once

and arriving back at Qi.
We now have g words {w1, . . . , wg} in g letters α1, . . . , αg. Form the g × g matrix M whose (i, j)th

entry is the free derivative of the word wi with respect to the letter αj (“free derivative” means the
derivative in the sense of Fox calculus, which is computed slightly differently than a standard partial
derivative). Now pick a new formal letter t and set each αj equal to t (and each α−1

j equal to t−1). This
procedure yields a g × g matrix P whose entries are Laurent polynomials in t.

Consider the Laurent polynomial Pij corresponding to the free derivative of wi with respect to αj .
Each term in Pij comes from an occurrence of αj or α−1

j in wi, and each such occurence comes from a
specific intersection point xj,k of αj with βi. Label the term with these two indices j and k. For example,
if Pij = 1− t−2 + t−3, the terms might be labeled as 14,2 − t−2

2,1 + t−3
1,4. It is clear that each pair of indices

(j, k) representing an intersection point occurs exactly once on a term in some Pij .
Now take the determinant of P using the permutation expansion. Make no cancellations, except that

multiplication of any term by zero removes that term from the calculation. The result is a single Laurent
polynomial in t; every term carries g pairs of indices (j1, k1), . . . , (jg, kg). Since the indices ji must all be
distinct, we have {j1, . . . , jg} = {1, . . . , g}. Thus, we may relabel ji as i. We will write the term carrying
the indices {(1, k1), . . . , (g, kg)} as td(1,k1),...,(g,kg).

A set of g pairs of indices appearing on a term in detP comes from a set of g intersection points
{x1,k1 , . . . , x1,kg}. Furthermore, each pair of indices comes from a different row of P and hence from a
different α curve. Thus this set of intersection points corresponds to a point x ∈ Tα ∩ Tβ . In this way,
each x ∈ Tα ∩ Tβ appears exactly once in the expression for detP .

Definition 3.7. For x ∈ Tα ∩ Tβ, define A′(x) to be the degree d in t of the corresponding term
td(1,k1),...,(g,kg) in detP described above.

The function A′ depends on various arbitrary choices such as the basepoints Qi in the β curves. It
turns out, though, that we can shift A′ by a constant independent of x to obtain a function x 7→ A(x)
which is independent of these choices. We first describe how to make this shift and then prove that
A(x) = j(x).

To define the function A, note that if we allow ourselves to cancel terms in detP , we get

detP = ±tk∆(K), (3)

for some k ∈ Z, where ∆(K) is the symmetrized Alexander polynomial of K.

Definition 3.8. The Alexander grading A(x) of x is A′(x)− k, where k is the unique integer satisfying
detP = ±tk∆(K).

3.2.2 Proof that the Fox calculus algorithm works.

As promised, the Alexander grading A(x) is equal to the index j(x) defined earlier:

Theorem 3.9. Let x ∈ Tα ∩ Tβ. Then A(x) = j(x).

Proof. Suppose x = {x1,k1 , . . . , xg,kg}, and let td(1,k1),...,(g,kg) be the corresponding term of detP . We

may write this term as Πgj=1t
dj
g,dg

, where tdj comes from taking the free derivative of some word wi as
described above and setting every letter equal to t. Working out the mechanics of free derivatives, as
well as the definition of the words wi, we can calculate dj as follows. For each curve αi, we have chosen
an orientation, so it makes sense to define a curve α′

i by pushing αi slightly to the left with respect to
its direction of travel. Then dj equals the number of intersections (with sign) of βj with the curves α′

i

when traversing βj from the starting point Qj to the intersection point xj,kj . Hence d =
∑

j dj is the
total number of intersections of β curves with the α′

i curves, when the β curves are traversed from the
starting points Qj to the intersection points xj,kj .

Now suppose x and y are two points in Tα ∩ Tβ. Let t
d
(1,k1),...,(g,kg)

be the term in detP corresponding

to x, and let td
′

(1,k′1),...,(g,k
′
g)

be the term corresponding to y. The above computation tells us that

A(x) − A(y) = d − d′ is the total number of intersections of β curves with the α′
i curves, when βj is

traversed from the point xj,k′j to the point xj,kj .
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Hence A(x)−A(y) is a sum of intersection signs. We can break this sum up according to the α curves.
For each j, let Bj be the segment of βj connecting xj,k′j to xj,kj . Then A(x)−A(y) =

∑
i(α

′
i · (

∑
j Bj)),

where · denotes the signed intersection number. Recall the curve cx,y from Section 2.2.3. As long as
cx,y has no component along βg, we have α′

i · (
∑

j Bj) = α′
i · cx,y, so

A(x)−A(y) =
∑

i

α′
i · cx,y. (4)

Note that cx,y is only uniquely defined up to the addition of full α and β curves. However, α′
i ∩ αj = ∅

for all i, j and (
∑

i α
′
i) ·βj = (

∑
i αi) ·βj = 0 for all j 6= g by our orientation convention for the α curves.

Hence, in equation 4, we can choose any representative for cx,y in H1(Σ)
〈[α1],...,[αg],[β1],...,[βg]〉

so long as it has

no component along βg. In particular, we can take cx,y = c′x,y minus any possible βg component, where
c′x,y = ∂D(φ) for the unique φ ∈ π2(x,y) with nw(φ) = 0. We will denote this choice of cx,y by δ.

We have arrived at the equation A(x)−A(y) =
∑
i(α

′
i · δ). Recall that the only α curve intersecting

βg is αg. Hence, for i 6= g, we have α′
i · δ = α′

i · c
′
x,y. But c′x,y is zero in H1(Σ), so this intersection

number vanishes. Thus most terms in our expression for A(x) − A(y) cancel, and we are left with
A(x)−A(y) = α′

g · δ.
Now recall from Section 2.2.5 that we can compute the multiplicity of φ on a region by picking a

point in that region and a path from w to that point. In particular, to compute nz(φ), we can pick a
path γ from w to z. We choose γ to be a segment of α′

g (or possibly a small isotopic translate), going
the long way around and hence not intersecting βg. Then α′

g · δ = γ · ∂(D(φ)). From the computation
in Section 2.2.5, a positive intersection of γ with ∂(D(φ)) with multiplicity n adds n to the coefficient in
D(φ) of the next region, while a negative intersection with multiplicity n subtracts n from the coefficient.
We start with coefficient 0 and end with nz(φ), so γ ·∂(D(φ)) = nz(φ). We have now derived the equation
A(x)−A(y) = nz(φ).

Since nw(φ) = 0, we may write this equation as A(x) − A(y) = nz(φ) − nw(φ). Proposition 2.50
then becomes s(x) − s(y) = (A(x) − A(y)) · PD[µ]. But we also have s(x) − j(x)PD[µ] = t0 and
s(y) − j(y)PD[µ] = t0. Therefore, s(x) − s(y) = (j(x) − j(y))PD[µ]. We may conclude that A(x) −
A(y) = j(x)− j(y). Rearranging terms, A(x)− j(x) = A(y)− j(y) for all x and y.

Hence the mappings x 7→ A(x) and x 7→ j(x) only differ by a constant independent of x. We are
done if we can show this constant is zero. Indeed, another way of saying that A and j differ by a constant
is to say that for some l ∈ Z,

detP = ±tl
∑

x∈Tα∩Tβ

(−1)sgnxtj(x).

Here, sgnx denotes the Z/2-grading of x, which is well-defined since we chose orientations on the α and
β curves. The above equation holds because sgnx agrees with the sign on the term corresponding to x

in detP . Note that we may write the right-hand side of this equation as ±tl
∑
d∈Z

tdχ(ĈFK(S3,K, d)).

Now compare this formula with Equation 3, which says detP = ±tk∆(K) for some k. We are done
if we can show k = l, since A was defined by shifting degrees in detP by k, while l was defined as the
shift in degree from detP to the function x 7→ j(x). Putting our formulas together, we have

∆(K) = ±tl−k
∑

d∈Z

tdχ(ĈFK(S3,K, d)),

and we want l− k = 0.
Since the highest and lowest degrees of ∆(K) are symmetric about zero, it will suffice to show the

same is true for the right-hand side of the above equation. But χ(ĈFK(S3,K, d)) = χ(ĤFK(S3,K, d)),

and by Proposition 2.57, we have the conjugation symmetry ĤFK(S3,K, d) = ĤFK(S3,K,−d). Thus,

the highest and lowest degrees of the polynomial
∑
d∈Z

tdχ(ĈFK(S3,K, d)) are symmetric about zero.
Hence l − k = 0, completing the proof.

Remark 3.10. Note that since βg intersects αg once and intersects no other α curves, the bottom row of
the matrix P will always look like (0, . . . , 0,±1). This fact has a few consequences. First of all, detP
is equal to the determinant of the submatrix (Pij)i,j≤g−1. Second of all, points x ∈ Tα ∩ Tβ, which a
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Figure 5: A grid representing CFK∞(S3,K), where K is the (2, 7) torus knot. Since no differentials
preserve both i and j in this example, the grid also represents CFK∞

s (S3,K). The right-hand side
represents CFK{i≥0,j≥1}(S3,K).

priori are described by g pairs of indices {(1, k1), . . . , (g, kg)}, may actually be described by the g − 1
pairs of indices {(1, k − 1), . . . , (g − 1, kg−1). We will reflect this fact in our notation. Hence, we will
often take x to be synonymous with {x1,k1 , . . . , xg−1,kg−1}, and a term of detP will be labelled like
td(1,k1),...,(g−1,kg−1)

.

Furthermore, when g = 2, this convention means that a point x ∈ Tα ∩ Tβ may be described by a
single pair of indices: x = {x1,k1}. In this case, we will drop the 1 from the notation, and simply write
x = xk. A term of detP will be labelled like tdk for some k. This change will simplify the notation for
the first two examples we consider, since both have g = 2. The final example, though, will have g = 3,
and so this further simplification will not apply.

3.3 Differentials in CFK∞

3.3.1 Symmetries and reduction to CFK{i=0}(S3,K).

The other half of the picture consists of finding the differentials in CFK∞(S3,K). We will indicate
these differentials with arrows in the grid diagram. An arrow will stand for a single disk φ with µ(φ) = 1
and #M(φ) = ±1. In our examples, these are the only differentials. Figure 5 illustrates the complete
grid, with differentials, in the case of the (2, 7) torus knot. It also shows the portion of the grid which
computes HF+(K−p, [−1]) for large p, by Theorem 3.3.

Since CFK∞(S3,K) has many generators, computing the differentials may seem a daunting task.
The i ↔ j symmetry, though, will simplify things considerably. This symmetry does not hold on the
level of CFK∞(S3,K), as Figure 4 demonstrates. However, we have two filtrations on CFK∞(S3,K).
Define CFK∞

s (S3,K) to be the complex obtained from CFK∞(S3,K) by cancelling all differentials
which preserve both the i-filtration and the j-filtration.

Proposition 3.11. The complex CFK∞
s (S3,K) is symmetric under the interchange of i and j.

As is typical with filtered complexes, cancelling the differentials of CFK∞(S3,K) step-by-step yields
the homology of the complex. Thus, reducing to CFK∞

s (S3,K) first and then taking homology produces
HFK∞(S3,K). More to the point, note that to computeH∗(CFK

{i≥0,j≥−m}(S3,K)), we can cancel the
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filtration-preserving differentials at the very beginning, before getting rid of CFK{i<0 or j<−m}(S3,K).

In other words, H∗(CFK
{i≥0,j≥−m}(S3,K)) = H∗(CFK

{i≥0,j≥−m}
s (S3,K)).

We have reduced our work to computing the complex CFK∞
s (S3,K). The automorphism U will

simplify the situation even further. If we can compute CFK
{i=0}
s (S3,K), then by applying powers of

U we can reconstruct all differentials in CFK∞
s (S3,K) which preserve i. Proposition 3.11 then gives

us the differentials which preserve j. But in our examples, the homological grading will ensure that no
differentials can decrease both i and j. Hence we will have rebuilt all of CFK∞

s (S3,K).
In summary, we will analyze our examples by first computing the complex CFK{i=0}(S3,K). We

will then cancel the differentials which preserve j, producing CFK
{i=0}
s (S3,K). Applying U and using

Proposition 3.11 as just described, we will obtain CFK∞
s (S3,K). Finally, taking homology of the

appropriate portion of this complex gives HF+ of large surgeries on K.

3.3.2 Maslov indices.

Generators of CFK{i=0}(S3,K) are points [x, 0, j] where x ∈ Tα ∩ Tβ and j = A(x). Since j is
determined entirely by x, we will often just refer to the generators of the complex as points x ∈ Tα ∩ Tβ .

If x and y are generators of CFK{i=0}(S3,K), then finding the y-component of ∂x amounts to
finding a domain D in Σ representing an element φ of π2(x,y), computing µ(φ), and (when this index
is 1 and nw(D) is zero) counting points in the moduli space M(φ). We will see that, given D, there is
an easy method of computing the Maslov index of the associated disk φ. When µ(φ) = 1, it still may
be very difficult to count the points in M(φ). Luckily, though, for certain types of domains, there are
theorems saying that #(M(φ)) is always ±1, and in our examples we will rarely need to consider types
other than these.

First, we will deal with the Maslov index. Let D =
∑
niσi be a domain in Σ representing a homotopy

class φ ∈ π2(x,y) where x,y ∈ Tα ∩ Tβ . Recall from Section 2.2.5 that the regions σi are the components
of Σ \ {α1, . . . , αg, β1, . . . , βg}. We will compute the Maslov index of φ in terms of the Euler measure of
D and the multiplicities of D at x and y, which we will now define:

Definition 3.12. For one of the regions σi defined above, the Euler measure of σi is defined to be the
Euler characteristic of σi minus 1

4 times the number k of corners of σi; concisely,

e(σi) := χ(σi)−
1

4
k.

For a general domain D =
∑
niσi, we define e(D) :=

∑
nie(σi).

For the multiplicities of D at x and y, suppose x = {x1, . . . , xg} and y = {y1, . . . , yg}. Since the
points xi and yi are on the α and β curves which form the boundary of D, we need a convention for the
multiplicity of D at these points. We do it by averaging, as follows:

Definition 3.13. Suppose x is in the intersection of the α and β curves, and let D be a domain in Σ as
above. Let σi1 , . . . , σi4 be the four regions with x as a corner. Define nx(D) = 1

4

∑4
k=1 nik . For a point

x = {x1, . . . , xg} ∈ Tα ∩ Tβ, define nx(D) =
∑g

i=1 nxi
(D).

With these definitions in place, we have the following characterization of the Maslov index:

Proposition 3.14. If x,y ∈ Tα ∩ Tβ, φ ∈ π2(x,y), and D = D(φ) is the domain of φ, then

µ(φ) = e(D) + nx(D) + ny(D).

Proof. See [3].

3.3.3 Some domains with with #M(φ) = ±1.

Now we will list a few types of domains with Maslov index 1 with the property that for the corresponding
homotopy classes φ, we always have #M(φ) = ±1. A more thorough discussion of these facts can be
found in the Appendix to [13].
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Proposition 3.15. Let x,y ∈ Tα ∩ Tβ and suppose φ ∈ π2(x,y) is a disk whose domain D is a 2g-gon,
i.e. a topologically trivial embedded disk whose boundary consists of 2g arcs along the α and β curves
connecting each xi to a yj. Then µ(φ) = 1 and #M(φ) = ±1.

Proposition 3.16. Let x+ = {x1, . . . , xg−1, x
+} and x− = {x1, . . . , xg−1, x

−} be two elements of
Tα ∩ Tβ differing in only one point. Suppose φ ∈ π2(x,y) is a disk whose domain D satisfies:

(a) ∂(D) is supported entirely on αg and βg.

(b) Topologically, D is a collection of disks joined by at most g − 2 handles.

Then µ(φ) = 1 and #M(φ) = ±1.

3.4 Absolute grading of CFK∞

With these tools in hand, we can begin looking for differentials in CFK{i=0}(S3,K). Once we have
found them all, the final required piece is to identify the homological grading of each generator. To see
the relative gradings, it will usually suffice to note that any differential, in any of the complexes under
consideration, decreases homological degree by 1, and U decreases homological degree by 2. Proposi-
tion 2.57 also tells us how the grading of generators in one Spinc structure relates to the grading in the
conjugate Spinc structure. However, we need something to fix the absolute gradings. The solution is to
view CFK{i=0}(S3,K) as the E0 term of a spectral sequence computing ĤF (S3) ≃ Z. The requirement
that this Z have homological grading 0 fixes the homological gradings of CFK{i=0}(S3,K) once the
relative gradings are known. The following proposition summarizes the situation.

Proposition 3.17. There exists a spectral sequence converging to ĤF (S3) ≃ Z whose E1 term is equal

to ĤFK(S3,K).

Proof. Recall from Section 2.5.2 that the index j gives ĈF (S3) ≃ CFK{i=0}(S3,K) the structure of a
filtered complex. We may thus view the complex as the E0-term of a spectral sequence converging to
ĤF (S3) ≃ Z, as shown below:

...
...

...

· · · CFK
{i=0,j=1}
d (S3,K) //

))TTTTTTTTTTTTTTT

$$HHHHHHHHHHHHHHHHHHHHHHHHHHH
CFK

{i=0,j=1}
d−1 (S3,K) //

))TTTTTTTTTTTTTTT

$$HHHHHHHHHHHHHHHHHHHHHHHHHHH
CFK

{i=0,j=1}
d−2 (S3,K) · · ·

· · · CFK
{i=0,j=0}
d (S3,K) //

))TTTTTTTTTTTTTTTTTTTT
CFK

{i=0,j=0}
d−1 (S3,K) //

))TTTTTTTTTTTTTTTTTTTT
CFK

{i=0,j=0}
d−2 (S3,K) · · ·

...
...

...

The subscripts denote absolute homological degrees. Since ĈFK(S3,K) is the graded complex associated
to the j-filtration on CFK{i=0}(S3,K), we may write the E1 term as
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...
...

...

· · · ĤFKd(S
3,K, 1)

))RRRRRRRRRRRRR

""EE
EEE

EE
EE

EEE
EE

EE
EEE

EE
EEE

ĤFKd−1(S
3,K, 1)

))SSSSSSSSSSSSSS

##FFF
FFFFF

FFFFFF
FFFFF

FFFFFF
ĤFKd−2(S

3,K, 1) · · ·

· · · ĤFKd(S
3,K, 0)

((RRRRRRRRRRRRRRRRRR
ĤFKd−1(S

3,K, 0)

))SSSSSSSSSSSSSSSSSS
ĤFKd−2(S

3,K, 0) · · ·

...
...

...

Suppressing mention of the differentials and absolute gradings, we may write this E1 term as

⊕

j∈Z

ĤFK(S3,K, j) = ĤFK(S3,K),

and hence we have proved Proposition 3.17.

3.5 Examples

3.5.1 Destabilization of doubly-pointed Heegaard diagrams

Fix a marked Heegaard diagram (Σ,α,β,m) for K and let (Σ,α,β, w, z) be the corresponding two-
pointed Heegaard diagram. For computations, the following fact will be helpful.

Remark 3.18. Suppose (Σ,α,β, w, z) is a two-pointed Heegaard diagram such that one of the curves in
β, say βg, intersects only one α curve, say αg, in one point. Let Σ′ be the surface obtained from Σ by a
surgery which removes βg. Let α0 = α \ {αg} and let β0 = β \ {βg}, viewed as curves in Σ′. There is
an obvious bijection between Tα ∩ Tβ and Tα0

∩ Tβ0
.

Lemma 3.19. For a suitable choice of complex structure on Σ′, the obvious bijection between Tα ∩ Tβ

and Tα0
∩ Tβ0

gives an isomorphism of chain complexes CF∞(Σ,α,β, w, z) ≃ CF∞(Σ′,α0,β0, w
′, z′),

where w′ and z′ are points in Σ′ corresponding to w and z in Σ.

For the idea of the proof of Lemma 3.19, see the proof of Theorem 1.1 in Section 10 of [11].
In the examples we will consider, the conditions of the lemma will always hold, with βg equal to

the meridian of the knot. Thus, to compute differentials in CFK∞(S3,K), it will suffice to count
holomorphic disks in the destabilized diagram, an easier task because the genus has been reduced by
one.

3.5.2 The left-handed trefoil.

Now we will carry out the above procedure in a few examples. The first is the left-handed trefoil. We use
the Heegaard diagram derived in Section 2.5.1; see Figure 6. The generators of CFK∞(S3,K) correspond
to the points x1, x2, and x3 in the diagram. Our first task is to compute their Alexander gradings. To
obtain the matrix P , we first compute the words wi and their free derivatives, for 1 ≤ i ≤ g − 1. Here,
g = 2, so we need only consider w1.

Word Expression

w1 α2α1α2α
−1
1 α−1

2 α−1
1

∂1w1 α2 − α2α1α2α
−1
1 − α2α1α2α

−1
1 α−1

2 α−1
1

Replacing all the letters αi by t, we get the following matrix, where ∗ denotes an entry irrelevant for the
determinant:

P =

(
t− t2 − 1 ∗

0 1

)
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β1

x1 x2 x
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Figure 6: This is the Heegaard diagram for the trefoil before it has been destabilized.
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Figure 7: CFK∞(S3,K). A 1 indicates a copy of Z.

Thus, detP = t− t2− 1. At this point, we examine the terms to see how they should be labelled; we get
detP = t2 − t21 − 13. Thus, before symmetrizing, we would have A(x1) = 2, A(x2) = 1, and A(x3) = 0.
After symmetrizing, we get the true Alexander gradings, which are

Generator x Alexander grading A(x)
x1 1
x2 0
x3 −1

At this point we have identified the generators of CFK∞(S3,K); Figure 7 depicts them in grid form.
Now we want to identify the differentials in CFK∞(S3,K), or equivalently just the differentials in

CFK{i=0}(S3,K). For this purpose, it will be easier to work with the destabilized diagram shown in
Figure 8.

There is one obvious differential from x1 to x2, with coefficient ±1. In fact, this is the only differential
in CFK∞(S3,K). The situation is summarized in Figure 9. From this, we can first conclude that

ĤFK(S3,K, d) = CFK{i=0,j=d}(S3,K), so we have

ĤFK(S3,K, d) =

{
Z if − 1 ≤ d ≤ 1;

0 otherwise.

33



w

1x 2x x3
α1

β1

z

Figure 8: This diagram is the result of destabilization.

−3

x3

x2

x1

j = 3

j = 2

j = 1

j = 0

j = −1

j = −2

j = −3

Absolute degree:

Z

Z

Z

4 3 2 1 0 −1 −2

Figure 9: The E0 term of the spectral sequence for the left-handed trefoil. The symbol xi stands for the
group Z ·xi, and arrows indicate a differential with coefficient ±1. Since there are no filtration-preserving
differentials, this figure also represents the E1 term.
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Figure 10: CFK∞(S3,K), showing both generators and differentials.

Furthermore, since the homology of this complex computes ĤF (S3) = Z, which is localized in absolute
degree 0, we see that the absolute degree of the generator x3 is 0.

Using the symmetries of CFK∞(S3,K), we can construct a grid picture of the whole complex; see
Figure 10. From this grid, and the fact that the automorphism U of CFK∞(S3,K) decreases absolute
degree by 2 while any differential decreases it by 1, we see that deg x1 = 2 and deg x2 = 1.

The complex depicted in Figure 10 tells us how to compute HF+(K−p, [m]), with absolute degrees,
for any m. We just take the homology of the appropriate portion of the complex and apply Theorem 3.3.
The absolute gradings also come from Theorem 3.3.

3.5.3 The (2, 7) torus knot.

Our next example is the (2, 7) torus knot; K will now denote this knot. Figure 11 shows a Heegaard
diagram for K derived from its Schubert normal form. The generators correspond to x1, . . . , x7. The
table below shows w1 and its free derivative:

Word Expression

w1 α2α1α2α1α2α1α2α
−1
1 α−1

2 α−1
1 α−1

2 α−1
1 α−1

2 α−1
1

∂1w1 α2 + α2α1α2 + α2α1α2α1α2 − α2α1α2α1α2α1α2α
−1
1

−α2α1α2α1α2α1α2α
−1
1 α−1

2 α−1
1 − α2α1α2α1α2α1α2α

−1
1 α−1

2 α−1
1 α−1

2 α−1
1

−α2α1α2α1α2α1α2α
−1
1 α−1

2 α−1
1 α−1

2 α−1
1 α−1

2 α−1
1

Replacing the letters αi by t, we get

P =

(
t+ t3 + t5 − t6 − t4 − t2 − 1 ∗

0 1

)

and hence detP = t+ t3+ t5− t6− t4− t2− 1. Labelling the terms with their corresponding intersection
points, this is t6 + t34 + t52 − t61 − t43 − t25 − 17. Thus, after symmetrizing, we have the following table:

Generator x Alexander grading A(x)
x1 3
x2 2
x3 1
x4 0
x5 −1
x6 −2
x7 −3
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1

x1 x2 x3 x4 x5 x6 x7

β1β2
α2

α1

Q

Figure 11: A Heegaard diagram for the (2, 7) torus knot.

Now we can write down the generators of CFK∞(S3,K) in grid form; they appear in Figure 12.
Our next task is to find the differentials in CFK{i=0}(S3,K). We will destabilize the diagram,

producing Figure 13. This time, there are three differentials in CFK{i=0}(S3,K). They go from x1
to x2, from x3 to x4, and from x5 to x6, each with coefficient ±1. Figure 14 illustrates the complex
CFK{i=0}(S3,K) with differentials added.

Again, there are no filtration-preserving differentials, so

ĤFK(S3,K, d) = CFK{i=0,j=d}(S3,K) =

{
Z if − 3 ≤ d ≤ 3;

0 otherwise.

The homology of CFK{i=0}(S3,K) is Z, generated by x7. Hence x7 has absolute degree 0. Furthermore,
we can use the symmetries of CFK∞(S3,K) to identify the differentials in this complex; they are shown
in the grid in Figure 15, which reproduces Figure 5 from earlier. As with the trefoil, this grid, plus the
fact that U decreases absolute degree by 2 while any differential decreases it by 1, pins down the absolute
degree of each xi. We have deg x1 = 7, deg x2 = 6, deg x3 = 5, and so on; in general, deg xi = 8 − i.
Cutting out the appropriate part of this diagram and taking homology produces HF+(K−p, [m]) by
Theorem 3.3.

3.5.4 The (3, 4) torus knot.

Our final example is the (3, 4) torus knot; K will now denote this knot. A Heegaard diagram for K is
shown in Figure 16. The diagram arises from a bridge presentation for K, although to save space we
will not show the details. In this example, the genus of the diagram is 3 rather than 2, so we might
expect additional complications to arise. By our previous convention, we should label the intersection
points as x1,1, . . . , x1,6 and x2,1, . . . , x2,5. However, to get rid of an index, we will define xk := x1,k and
yk := x2,k. Then an intersection point x ∈ Tα ∩ Tβ will correspond to a set of two points (xk, yl) where
1 ≤ k ≤ 6 and 1 ≤ l ≤ 5.

The following table lists the words wi and their formal derivatives:
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Figure 12: The generators of CFK∞(S3,K).

1

z

w

x1 x2 x3 x4 x5 x6 x7

α1

β

Figure 13: The destabilized Heegaard diagram for the (2, 7) torus knot.
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−1

6

x5

x3

x7

x4

x2

x1

j = 3

j = 2

j = 1

j = 0

j = −1

j = −2

j = −3

Z

Z

Z

Z

Absolute degree:

Z

Z

Z

6 5 4 3 2 1 0

x

Figure 14: The E0 term of the spectral sequence in the case of the (2, 7) torus knot. As before, the
symbol xi stands for the group Z · xi, and arrows indicate a differential with coefficient ±1. The figure
also represents the E1 term.

j

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

1

1

1

1

1

.

.

.

.

.

.

. .

.

.

.

.

.

.

1

1

1

1

1

1

1

1

1

1

1

1

1

i1

Figure 15: Differentials in CFK∞(S3,K).

38



1

α2

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5

β1

β2

β3α1 α3

Q2

Q

Figure 16: A Heegaard diagram for the (3, 4) torus knot.

2

x1 x2

x3
x4 x5 x6z

w

y1 y2 y3 y4 y5

β1
α2

α1
β

Figure 17: The destabilized Heegaard diagram for the (3, 4) torus knot.
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Word Expression

w1 α−1
2 α−1

1 α−1
3 α−1

2 α1α2α3α1

∂1w1 −α−1
2 α−1

1 + α−1
2 α−1

1 α−1
3 α−1

2 + α−1
2 α−1

1 α−1
3 α−1

2 α1α2α3

∂2w1 −α−1
2 − α−1

2 α−1
1 α−1

3 α−1
2 + α−1

2 α−1
1 α−1

3 α−1
2 α1

w2 α−1
1 α−1

3 α−1
2 α−1

1 α3α1α2α3

∂1w2 −α−1
1 − α−1

1 α−1
3 α−1

2 α−1
1 + α−1

1 α−1
3 α−1

2 α−1
1 α3

∂2w2 −α−1
1 α−1

3 α−1
2 + α−1

1 α−1
3 α−1

2 α−1
1 α3α1

Thus,

P =



−t−2 + t−4 + t−1 −t−1 − t−4 + t−3 ∗
−t−1 − t−4 + t−3 −t−3 + t−2 ∗

0 0 1




and
detP = (−t−2

x4
+ t−4

x1
+ t−1

x5
)(−t−3

y3 + t−2
y4 )− (−t−1

x6
− t−4

x2
+ t−3

x3
)(−t−1

y5 − t−4
y1 + t−3

y2 ).

Because we modified the index convention, we have taken the liberty of labelling terms with the actual
intersection points rather than with the corresponding indices. Also, to avoid a large mess, we have not
expanded detP . It should be clear how to extract the Alexander gradings for the various elements of
Tα ∩ Tβ from this formula; the table below lists them.

Generator x Alexander grading A(x)
(x1, y3) −2
(x1, y4) −1
(x2, y1) −3
(x2, y2) −2
(x2, y5) 0
(x3, y1) −2
(x3, y2) −1
(x3, y5) 1
(x4, y3) 0
(x4, y4) 1
(x5, y3) 1
(x5, y4) 2
(x6, y1) 0
(x6, y2) 1
(x6, y5) 3

Figure 4 depicts the generators of CFK∞(S3,K); to save space, we do not reproduce this figure here.
As usual, to determine the differentials in CFK{i=0}(S3,K), we destabilize the diagram, as in Fig-

ure 17. The situation is more complicated than in the previous two examples, due to the presence of
differentials which preserve filtration. These differentials come from domains with nz = 0; there are
six such differentials visible in the diagram. There are also many differentials with nz = 1, and these
decrease the filtration by 1. Figure 18 summarizes the differentials. All except one are domains of the
type discussed in Section 3.3.3. The one tricky differential connects (x1, y3) to (x3, y1). Its domain
contains a tube and has two 270◦ corners. While we can easily compute its Maslov index to be 1, it is
less clear how many holomorphic representatives it has. We can deduce, though, that it represents a

differential from the requirement that ∂2 = 0. Taking the graded complex ĈFK(S3,K) associated to
CFK{i=0}(S3,K) and then taking its homology, we get the E1 term of the spectral sequence. This E1

term is ĤFK(S3,K); see Figure 19. As before, we can reconstruct CFK∞
s (S3,K) from this complex

(shown in Figure 20) and use Theorem 3.3 to compute HF+(K−p, [m]) for large p.

3.6 Proofs of Theorem 3.4 and Theorem 3.3.

3.6.1 Proof of Theorem 3.4.

Our first task will be to show that Φ actually fits into the diagrams in the statement of Theorem 3.4.
Indeed, Φ maps CFK{i<0 or j<0}(S3,K) into CF−(K−p), since if ψ ∈ π2(x,Θβγ ,y) represents a compo-
nent of Φ from [x, i, j] to [y, i− nw(ψ)], then nw(ψ)− nz(ψ) = i− j by the definition of Φ. Rearranging
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j = −3

5, y4)

(x3, y5)

(x6, y2) 5, y3)(x

(x4, y4)

(x6, y5)

(x3, y2)(x1, y4)

(x1, y3) (x2, y2)

(x4, y3)

(x3, y1)

(x2, y1)

6, y1)(x (x2, y5)

j = 3

j = 2

j = 1

j = 0

j = −1

j = −2

(x

Figure 18: Differentials in the complex CFK{i=0}(S3,K). This complex forms the E0 term of the
spectral sequence.

Absolute degree:

6, x5)

(x5, y4)

(x6, y1) − (x2, y5)

(x3, y1) − (x2, y2)

(x2, y1)

j = 3

j = 2

j = 1

j = 0

j = −1

j = −2

j = −3

Z

Z

Z

Z

Z

0 −1 −2 −3 −4 −5 −6 −7

(x

Figure 19: The result of cancelling all filtration-preserving differentials. The element listed at j = d is a

generator for ĤFK(S3,K, d).
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Figure 20: Differentials in CFK∞
s (S3,K).

terms, i−nw(ψ) = j−nz(ψ), and since ψ admits a holomorphic representative we know that nw(ψ) and
nz(ψ) are nonnegative. Hence if i < 0 then i− nw(ψ) < 0 and we are done. If j < 0, then j − nz(ψ) < 0
too, and so i− nw(ψ) = j − nz(ψ) < 0. Either way, [x, i− nw(ψ)] ∈ CF−(K−p). This computation also

shows that Φ induces a well-defined map on quotient spaces CFK{i≥0,j≥0}(S3,K)
Φ
→ CF+(K−p).

For the bottom diagram, we need to show that Φ maps CFK{min(i,j)=0}(S3,K) into ĈF (K−p). These
groups should be interpreted as subgroups of the quotients CFK{i≥0,j≥0} and CF+(K−p), respectively.
In other words, if min(i, j) = 0, then we want to have i − nw(ψ) ≤ 0 for any ψ contributing to Φ. But
if i = 0 this follows from the nonnegativity of nw(ψ), and if j = 0 it follows from the nonnegativity of
nz(ψ) together with the requirement i− nw(ψ) = j − nz(ψ).

We have shown that Φ fits into the diagrams without regard for Spinc structures; now we want to
deal with these. Fix m in Z. It will suffice to show that Φ maps CFK∞(S3,K,m) into CF∞(K−p, [m])
for sufficiently large p. We need the following lemma:

Lemma 3.20. Suppose x ∈ Tα ∩ Tβ and ψ ∈ π2(x,Θβγ ,y) for some y ∈ Tα ∩ Tγ . Then

〈c1(s(x)), [F̂ ]〉+ 2(nw(ψ)− nz(ψ)) = 〈c1(sw(ψ)), [S]〉 − p.

Proof. See [5], Section 4, p. 80.

With this lemma in place, let ψ ∈ π2(x,Θβγ ,y) represent a component of Φ([x, i, j]). To say that
[y, i−nw(ψ)] ∈ CF∞(K−p, [m]) is to say that sw(y) is the restriction of a Spinc structure r on the surgery
cobordism W−p such that 〈c1(r), [S]〉 − p ≡ 2m mod 2p. But sw(y) is the restriction of r = sw(ψ), and

by Lemma 3.20, we have 〈c1(sw(ψ)), [S]〉 − p = 〈c1(s(x)), [F̂ ]〉 + 2(nw(ψ) − nz(ψ)). The definition of Φ
requires that nw(ψ)− nz(ψ) = i− j, so

〈c1(sw(ψ)), [S]〉 − p = 〈c1(s(x)), [F̂ ]〉+ 2(i− j)

= 〈c1(s(x) + (i − j)PD[µ]), [F̂ ]〉

= 〈c1(tm), [F̂ ]〉

= 2m,

as desired. At this point we have shown that Φ fits into the diagrams in the statement of Theorem 3.4.
It remains to show that Φ is an isomorphism between all groups in question. Our strategy will be to

decompose Φ as Φ0+ lower order terms with respect to the area filtration, where Φ0 is an isomorphism.
Then we will argue that Φ is an isomorphism since Φ0 is.
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Figure 21: The winding region. The top horizontal line is glued to the bottom horizontal line.

Let x = {x1, . . . , xg} ∈ Tα ∩ Tβ . Consider a small neighborhood of βg in Σ, and assume that the
winding of γg around βg occurs in this region. It will be called the winding region; see Figure 21. Near
xg are p intersection points {x′g,1, . . . , x

′
g,p} of αg with γg, and near xi is a unique closest intersection

point x′i of αi with γi for 1 ≤ i ≤ g−1. In this way, there are p elements of Tα ∩ Tγ naturally associated
to x, labelled x′

1, . . . ,x
′
p where x′

k = {x′1, . . . , x
′
g−1, x

′
g,k}. For each k, furthermore, there exists a small

triangle ψk ∈ π2(x,Θβγ ,x
′
k). The interesting part of the domain of ψk is illustrated in Figure 21. By

the Riemann mapping theorem, all of the ψk satisfy µ(ψk) = 0 and #M(ψk) = ±1. Let [x, i, j] be a
generator of CFK∞(S3,K,m). For large enough p, we claim that there exists a unique k such that ψk
represents a component of Φ, i.e. such that nw(ψk)− nz(ψk) = i− j. This fact can be seen most easily
from Figure 21. By examining the domain of ψk, it is clear that as k runs from 1 to p, nw(ψk)− nz(ψk)
takes all possible values in a range of about −p/2 to p/2, exactly once per value. Hence it is equal to
i − j exactly once (for large p), so there is a unique ψk appearing in the expression for Φ([x, i, j]). Let
ψ′ = ψk and x′ = x′

k for this unique value of k. Now define Φ0([x, i, j]) := [x′, i− nw(ψ
′)].

To show Φ0 is injective, it suffices to show that we can uniquely reconstruct [x, i, j] from [x′, i−nw(ψ)].
But x is the unique point of Tα ∩ Tβ closest to x′, and once x is identified, there is a unique small triangle
ψ′ ∈ π2(x,Θβγ ,x

′). Then nw(ψ
′) is well-defined, and so we can pin down i because we know i− nw(ψ).

Finally, j is uniquely characterized by the property s(x) + (i − j)PD[µ] = tm.
To show Φ0 is surjective is a little more subtle. We want to show that any [y, i] ∈ CF∞(K−p, [m]) is

in the image of Φ0, where y ∈ Tα ∩ Tγ . Write y = {y1, . . . , yg}. The argument of the above paragraph
would suffice if we knew y was one of the points x′

k for some x ∈ Tα ∩ Tβ . This, in turn, would be true
if we knew yg was x′g,k for some intersection point xg ∈ αg ∩ βg.

We claim that any y representing an element of CF∞(K−p, [m]) satisfies this condition. Indeed,
[y, i] ∈ CF∞(K−p, [m]) if and only if sw(y) extends overW−p to a Spin

c structure r satisfying 〈c1(r), [S]〉−
p ≡ 2m mod 2p. By Section 2.6.3, this claim amounts to saying that, for any x ∈ Tα ∩ Tβ, there exists
ψ ∈ π2(x,Θβγ ,y) with 〈c1(sw(ψ)), [S]〉 − p ≡ 2m mod 2p. But Lemma 3.20 identifies the left-hand

side of this equation as 〈s(x), [F̂ ]〉 + 2(nw(ψ) − nz(ψ)). Now note that the quantities 〈s(x), [F̂ ]〉 and
2m do not depend on p. Thus, we may assume they are very small compared to p. Hence the equation
〈s(x), [F̂ ]〉 + 2(nw(ψ)− nz(ψ)) ≡ 2m mod 2p says that 2(nw(ψ)− nz(ψ)) is very small modulo 2p (i.e.
is very close to an even multiple of p, and is not close to p mod 2p).

But, assuming yg is not one of the points xg,k for some xg ∈ αg ∩ βg, we can estimate nw(ψ)−nz(ψ)
as follows. Choose a path δ from z to w which does not intersect βg. Then, as in Section 2.2.5, we
may compute nw(ψ) − nz(ψ) by counting the number of times δ crosses ∂(D(ψ)), counted with signs
and multiplicity. Now, to obtain ∂(D(ψ)), we can start with any 1-chain successively travelling between
points of x, Θβγ , and y along segments of the appropriate α, β, and γ curves, and then correct by
adding entire copies of α, β, and γ curves. In particular, we may start at xg, move to the nearby point
of Θβγ , and then travel away from βg along γg. When we leave γg onto an α curve, we will be far from
the winding region by assumption, and we will never traverse γg again.
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Hence our 1-chain has multiplicity 1 on about half (about p/2) of the “winds” of γg and multiplicity
0 on the other half, so ∂(D(ψ)) has multiplicity n + 1 on half and multiplicity n on the other half for
some n. For large p, the intersections of δ with ∂(D(ψ)) are approximately equal to the intersections of
δ with the γg-component of ∂(D(ψ)), since the number of intersections with other components does not
depend on p. The intersections of δ with the γg-component of ∂(D(ψ)) add up to about (2n+ 1)(p/2)
for some n. Therefore, 2(nw(ψ)− nz(ψ)) ∼ (2n+ 1)p ≡ p mod 2p. But this was precisely what we said
could not hold if [y, i] represented an element of CF∞(K−p, [m]).

In summary, CFK∞(S3,K,m)
Φ0→ CF∞(K−p, [m]) is an isomorphism. To show it is an isomorphism

from CFK{i<0 or j<0}(S3,K,m) to CF−(K−p, [m]), we want to show that if Φ0([x, i, j]) = [x′, i−nw(ψ′)]
satisfies i − nw(ψ

′) < 0, then we must have i < 0 or j < 0. But if i − nw(ψ
′) < 0, then j − nz(ψ

′) < 0
as well, and examining the possible domains of ψ′ in Figure 21, we realize that they all satisfy either

nw(ψ
′) = 0 or nz(ψ

′) = 0. Hence CFK{i≥0,j≥0}(S3,K,m)
Φ
→ CF+(K−p, [m]) is an isomorphism too,

and the same argument shows that CFK{min(i,j)=0}(S3,K,m)
Φ
→ ĈF (K−p, [m]) is an isomorphism.

Now consider the area filtration on CF∞(K−p, [m]). If [x, i, j] is a generator of CFK∞(S3,K,m),
then for any triangle ψ contributing to Φ([x, i, j]) other than ψ′, inspection of Figure 21 shows that
the domain of ψ cannot be supported entirely in the winding region. Thus, the corresponding element
[y, i− nw(ψ)] must be strictly lower in filtration degree than [x′, i− nw(ψ

′)], and we have

Φ = Φ0 + lower order terms.

Furthermore, the area filtration on CF∞(K−p, [m]) induces a filtration on CFK∞(S3,K,m) via
the isomorphism Φ0. Consider Φ−1

0 Φ; this map may be written as id+N where N strictly lowers the
filtration on CFK∞(S3,K,m). The sum

∑∞
k=0(−1)kN◦k would formally be an inverse for Φ−1

0 Φ if it
were well-defined. Unfortunately, the area filtration on CF∞(K−p, [m]) is not bounded below, so it is
not true that N◦k = 0 for large enough k. One can fix this issue by redefining CF∞ to allow power series
in U rather than just polynomials (while still restricting to polynomials in U−1). Alternatively, one can
cut off CF∞ at some very low homological degree and then take a limit. Either way, we conclude that
Φ has a left inverse. A similar argument shows Φ has a right inverse, so it is an isomorphism. One can
check that this argument works for all versions of Φ, not just the ∞ version (in fact, the version for CF+

is more straightforward since the filtrations are honestly lower-bounded).

3.6.2 Proof of Theorem 3.3.

This proof uses the integer surgeries exact triangle, which is discussed in Section 4.3 below. We prove
the statement without homological gradings first; then we derive the graded version.

Suppose |m| > g. The adjunction inequality (Theorem 2.41) tells us that HF+(K0,m) = 0. In fact,
if p > g, then HF+(K0,m

′) = 0 for all m′ ∼= m mod p. The integer surgeries triangle now has the form

HF+(S3)

{{ww
ww

ww
ww

ww

0 // HF+(K−p, [m]).

hhPPPPPPPPPPPP

Hence the map HF+(K−p, [m]) → HF+(S3) on the right leg of the triangle is an isomorphism.
Now suppose |m| ≤ g. Theorem 3.4 gives us HF+(K−p, [m]) ≃ H∗(CFK

{i≥0,j≥0}(S3,K,m)). But

there is an obvious isomorphism CFK{i≥0,j≥0}(S3,K,m)
≃
→ CFK{i≥0,j≥−m}(S3,K) sending [x, i, j] to

[x, i, j −m]. Thus HF+(K−p, [m]) ≃ H∗(CFK
{i≥0,j≥−m}(S3,K)).

It remains to fix the absolute gradings. First, suppose |m| > g, and let W denote the surgery
cobordism from K−p to S3 discussed in Section 2.6.5. As we will see in Section 4.3.2, the right leg of the
triangle above is ΦW . It is an isomorphism Z[U−1] → Z[U−1], since HF+(S3) = Z[U−1]. Hence it may
be written as k0 + k1U

−1 + k2U
−2 + · · · . The terms with nonzero powers of U all decrease homological

degree, so by the algebraic argument at the end of the proof of Theorem 3.4, the highest-order term k0
must be an isomorphism. Hence k0 = ±1, and we may use this highest-order term (rather than the full
ΦW ) as our isomorphism between HF+(K−p, [m]) and HF+(S3).

By Proposition 2.64, the highest-order term of ΦW comes from Spinc structures r onW which restrict
to [m] on K−p and which have the least-negative value of (c1(r))

2. In the notation of Section 2.6.5,
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we consider the Spinc structures rm′ on W , where m′ ≡ m mod p. Proposition 2.69 tells us that
c1(rm′)2 = −1/p(2m′ + p)2. For large p, this value is maximized when m′ = m. Thus, the highest-order

term shifts degree by −1/p(2m+p)2+1
4 = −(2m+p)2+p

4p . Using this highest-order term as our isomorphism,
we get the degree shift claimed in Theorem 3.3.

In the case |m| ≤ g, note that the isomorphism from CFK{i≥0,j≥0}(S3,K,m) to CF+(K−p, [m])
is given by the map Φ. The triangles giving rise to components of Φ are a subset of the triangles
giving rise to components of the map CF+(S3) → CF+(K−p, [m]) induced by the surgery cobordism

W−p : S
3 → K−p. A triangle ψ shifts absolute degree by c1(sw(ψ))2−2χ(W )−3σ(W )

4 = c1(sw(ψ))2+1
4 . But by

Lemma 3.20, we have 〈c1(sw(ψ)), [S]〉 − p = 2m for any triangle in Φ. Hence sw(ψ) = rm for these ψ, so
Proposition 2.69 tells us that (c1(sw(ψ)))

2 = − 1
p (2m + p)2. Therefore, our isomorphism shifts degrees

by −(1/p)(2m+p)2+1
4 = −(2m+p)2+p

4p , as claimed.

4 Knots are determined by their complements.

In this section, we will apply a result known as the exact triangle in Heegaard Floer homology, together

with a theorem that ĤFK determines the genus of a knot, to prove the following theorem of Gordon
and Luecke [2]:

Theorem 4.1. Let K1 and K2 be two knots in S3. Let Vi = S3 \ nbK, for i = 1, 2. Suppose that V1
is homeomorphic to V2 via a homeomorphism φ. Then φ may be extended to an equivalence of knots
between K1 and K2, i.e. φ may be extended to a homeomorphism of S3.

4.1 Overview.

Here we briefly outline our path to Theorem 4.1 before diving into the technical details. Theorem 4.1
will follow as an easy consequence of the following theorem:

Theorem 4.2. Let K be a knot in S3 and let r be a rational number. Suppose the Dehn surgery Kr is
homeomorphic to S3. Then K is the unknot.

This theorem, in turn, follows from the following special case:

Theorem 4.3. Let K be a knot in S3. Suppose the 1-surgery K1 is homeomorphic to S3. Then K is
the unknot.

The equivalence of Theorem 4.2 and Theorem 4.3 will use the “cyclic surgery theorem” of Culler, Gordon,
Luecke, and Shalen [1]:

Theorem 4.4. Let K be a knot in S3 and r = p/q ∈ Q such that π1(Kr) is cyclic. Either K is the
unknot, or q = ±1.

We will use this result without proof; see [1]. All of these reductions will be discussed in Section 4.2.
To prove Theorem 4.3, we need an important tool, namely the surgery exact triangle. We state

the exact triangle in Section 4.3; we also state a generalized form, the integer surgeries triangle. In
Section 4.4, we prove the most basic form of the triangle.

Once the exact triangle is established, we proceed to prove Theorem 4.3. We first show, in Section 4.5,
that HF+(K0, i) = 0 for all i 6= 0. In Section 4.6, we prove that if d is the greatest integer for which

ĤFK(S3,K, d) 6= 0, then ĤFK(S3,K, d) ≃ HF+(K0, d−1), as long as d > 1. Putting these two results

together, we conclude that ĤFK(S3,K, i) = 0 for all i ≥ 2. We then use (without proof) the fact that
knot Floer homology detects the genus of a knot. More precisely:

Theorem 4.5. Let d be the greatest integer for which ĤFK(S3,K, d) 6= 0. Then d = g, the Seifert
genus of K.

From this result and what has been done so far, we can conclude that g ≤ 1. Since the unknot is the
unique knot with genus 0, we will be done if we can show g = 0.

So far, though, we have not excluded the possibility of g = 1. To do so, we revisit the arguments of
Section 4.5 and Section 4.6 with twisted coefficients. We define Heegaard Floer homology with twisted
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coefficients in Section 4.7. We then state the relevant generalization of the surgery exact triangle in
Section 4.7.2. In Section 4.8, we show that HF+(K0)⊗Z[t±1] Z[t

±1, (t− 1)−1] = 0. We then use a result

stating that if d = 1 is the greatest integer for which ĤFK(S3,K, d) 6= 0, then ĤFK(S3,K, 1)⊗Z[t±1] ≃
HF+(K0, 0). Finally, we cite Theorem 4.5 again to conclude that g must be 0, proving Theorem 4.3 and
hence Theorem 4.1.

4.2 Reduction of Theorem 4.1 to Theorem 4.3.

4.2.1 Reduction to Theorem 4.2.

We begin by showing why Theorem 4.2 implies Theorem 4.1.

Proof. (Theorem 4.2 ⇒ Theorem 4.1). Suppose we have a homeomorphism φ : V1 → V2. Choose
homemorphisms ψi : D

2 × S1 ≃ nbKi. Then, for both values of i, ψi|S1×S1 is a homeomorphism from
S1 × S1 to ∂(nbKi) = ∂Vi, and we can write S3 = (D2 × S1) ∪ψi|S1×S1

Vi.

Now consider φ ◦ψ1|S1×S1 . This gives a homeomorphism from D2 × S1 to ∂(nbK2) = ∂V2. Hence φ
extends to a homeomorphism

S3 = (D2 × S1) ∪ψ1 V1
φ
→ (D2 × S1) ∪φ◦ψ1 V2.

Let µi ⊂ ∂Ki be a meridian for Ki. The manifold (D2×S1)∪φ◦ψ1 V2 is obtained from S3 by removing
nbK2 and gluing in a solid torus along the curve φ(µ1). If this curve happens to be homologous to µ2,
then (D2 × S1) ∪φ◦ψ1 V2 ≃ (D2 × S1) ∪ψ2 V2 = S3, and we are done.

Suppose, however, that φ(µ1) is not homologous to µ2. Then (D2 × S1) ∪φ◦ψ1 V2 is obtained from
S3 by Dehn surgery on K2; in other words, (D2 × S1) ∪φ◦ψ1 V2 = (K2)r for some r ∈ Q. But we know
from the above equation that this surgery must be homeomorphic to S3. By Theorem 4.2, this situation
cannot happen unless K2 is the unknot.

If K2 does happen to be the unknot, then repeat the above argument with the roles of K1 and K2

reversed. Either we get the desired extension of φ this time around, or K1 is also the unknot. In both
cases, we are done.

4.2.2 Reduction to Theorem 4.3.

Consider a knot K in S3 such that Kr ≃ S3 for some rational number r = p
q . Let U denote the unknot.

We begin by dealing with the case r < 0:

Lemma 4.6. If Theorem 4.2 holds for all r ≥ 0, then it holds for all rational r.

Proof. Suppose r < 0. We have S3 ≃ Kr = −(K−r). Thus, reversing orientations, K−r ≃ −S3. But
−S3 ≃ S3, so K−r ≃ S3. Now −r > 0, so by hypothesis we have K ≃ U . Thus, K ≃ U = U as
desired.

Therefore, we can assume that r = p
q with p and q both nonnegative. We next reduce to the case

p = 1:

Lemma 4.7. If Kr ≃ S3, where r = p
q , then p = 1.

Proof. A simple argument with the Mayer-Vietoris sequence shows that H1(Kr) = Z/p. Since H1(S
3) =

0, we must have p = 1.

Finally, we make use of the cyclic surgery theorem, Theorem 4.4, to conclude that q = 1 too: we have
K1/q = S3, and π1(S

3) is trivial (and hence cyclic) so the conditions of the theorem apply.

4.3 Statement of the surgery exact triangle.

We now state the surgery exact triangle and the integer surgeries triangle.
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4.3.1 The surgery exact triangle.

Let K be an oriented knot in S3 as usual. There is an exact sequence relating the Heegaard Floer
homology of S3, K0, and K1. Note that the zero-surgery K0 has positive first Betti number, so its
Heegaard Floer homology is not even relatively Z-graded, and K1 is not absolutely Z-graded. Thus, as
in Theorem 2.35, we cannot hope for a traditional homology long exact sequence with boundary maps
which lower degree by one. Rather, we will have to settle for an exact triangle in which only three groups
appear.

Theorem 4.8. There is an exact triangle

ĤF (S3)

yysssssssss

ĤF (K0)
// ĤF (K1).

eeKKKKKKKKKK

The same holds with ĤF replaced by HF+.

In ordinary homology, the maps in the long exact sequence (except for the connecting maps) are
induced by continuous maps between the corresponding spaces. Since Heegaard Floer homology is
functorial over cobordisms rather than over continuous maps, one might expect the maps in Theorem 4.8
to be induced by cobordisms. This is indeed the case; in fact, all three maps are induced by cobordisms.

4.3.2 Maps in the triangle.

The surgery cobordism from S3 to K0 induces maps ĤF (S3) → ĤF (K0) and HF
+(S3) → HF+(K0),

and these are the maps appearing in the triangles above. Furthermore, as we discuss presently, the same
applies to each “leg” of the triangle. We can view K1 as surgery on a knot in K0 and S3 as surgery on
a knot in K1, and we get associated surgery cobordisms K0 → K1 and K1 → S3. The induced maps on
Heegaard Floer homology coincide with those in the exact triangles.

To obtain K1 as a surgery on a knot in K0, let K
′ be the knot in K0 = (S3 \nbK)∪∂(nbK) (D

2×S1)
given by {0}×S1. We can take nbK ′ to be D2×S1, so K0 \nbK ′ = S3 \nbK. Now, K1 is obtained by
taking S3 \nbK and gluing in D2×S1 according to the framing given by the curve λ+µ, where λ is the
Seifert longitude for K and µ is the meridian for K. But λ + µ is a curve in ∂(nbK ′) which intersects
the meridian λ for K ′ once. Thus, λ+µ is a longitude for K ′, and K1 is precisely the manifold obtained
from (λ+ µ)-framed surgery on K ′.

Similarly, we can obtain S3 as a surgery on the knot K ′′ = {0} × S1 in K1 = (S3 \ nbK) ∪∂(nbK)

(D2 × S1). Again, D2 × S1 is a tubular neighborhood of K ′′, and removing this neighborhood gives
S3 \ nbK. Attaching D2 × S1 with framing µ gives S3; but µ is a longitude for K ′′, so S3 is obtained
from µ-framed surgery on K ′′. This construction was already discussed in Section 2.6.5.

Just as we can encode the data of a surgery in a Heegaard triple, we may encode the data of these
three surgeries in a Heegaard quadruple (Σ,α,β,γ, δ). We start with a Heegaard diagram (Σ,α,β)
describing K. As above, we let γg = λ and we take γi to be a small isotopic translate of βi for 1 ≤ i ≤ g.
Also, we take δg = λ+µ, and we let δi be a small isotopic translate of βi for 1 ≤ i ≤ g. Then Yαβ = S3,
Yαγ = K0, and Yαδ = K1. We will also require a few admissibility properties for this quadruple; see
Proposition 4.10.

The map in the triangle of most interest to us is the one from ĤF (K1) to ĤF (S3). In the proof
of Theorem 4.8 presented below, we will actually get this map as the connecting map in the long exact
sequence associated to a short exact sequence of complexes, not explicitly as a cobordism-induced map.
However, there are proofs of the exact triangle in which all three maps come explicitly from the natural
surgery cobordisms; see [10].

4.3.3 The integer surgeries triangle.

There is a variant of the exact triangle which involves n-surgery rather than 1-surgery, which we state
here.
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Theorem 4.9. Let [m] ∈ Z/n. There is an exact triangle

ĤF (S3)

vvnnnnnnnnnnnn

⊕

m′≡m mod n

ĤF (K0,m
′) // ĤF (Kn, [m]).

eeKKKKKKKKKKKK

The same holds with ĤF replaced by HF+.

The discussion of surgery cobordisms in Section 4.3.2 applies equally well here; the maps in the
triangles are all induced by surgery cobordisms.

4.4 Proof of the surgery exact triangle.

Here we present a proof of Theorem 4.8, following Section 9 of [6]. We prove the triangle for ĤF . The

result for HF+ takes a bit more work; we focus on ĤF both for simplicity and because the proof for
HF+ is presented very well in [6].

4.4.1 The Heegaard quadruple.

We begin by asserting the existence of a Heegaard diagram encoding the data of Y , K0, and K1 and
satisfying some additional conditions which will be important:

Proposition 4.10. There exists a pointed Heegaard quadruple (Σ,α,β,γ, δ, z) and a volume form on
Σ such that:

(a) Yαβ = S3, Yαγ = K0, and Yαδ = K1;

(b) For i = 1, . . . , g − 1, the βi, γi, and δi are small isotopic translates of one another, and
they intersect pairwise in two points with opposite sign;

(c) Every periodic domain has both positive and negative multiplicities, and has zero area with
respect to the volume form; and

(d) γg is isotopic to the concatenation of βg and δg.

The proof involves a bit of Morse theory; see [6].
We will consider a one-parameter family of isotopies of these curves, as follows: for 1 ≤ i ≤ g−1, and

for t ≥ 0, choose curves γi(t) such that γi(0) = γi and γi(t) → βi as t→ ∞. Choose δi(t) similarly, always
preserving the intersection properties of Proposition 4.10. Finally, choose γg(t) such that γg(0) = γg and
γg(t) → βg ∗ δg as t → ∞, where ∗ denotes the concatenation of paths. We can arrange that at each
stage, all periodic domains still have zero area as well as both positive and negative multiplicities. We
may also assume that the basepoint z is not in the support of any of these isotopies; thus, at each time
t, the quadruple (Σ,α,β,γ(t), δ(t), z) still satisfies the conditions of Proposition 4.10.

For large enough t, the curve γg(t) is very close to the concatenation of βg and δg, and γi(t) is very
close to βi for 1 ≤ i ≤ g − 1. If x ∈ Tα ∩ Tβ, let xi ∈ x be the point of intersection between βi
and some αj . Since γi(t) approaches very close to βi, there is a unique closest intersection point x′i
between αj and γi(t). These points form the element x′ ∈ Tα ∩ Tγ(t). We have produced a mapping

ι : Tα ∩ Tβ → Tα ∩ Tγ(t) and hence a homomorphism I : ĈF (S3) → ĈF (K0). The same argument

produces a map ρ : Tα ∩ Tδ(t) → Tα ∩ Tγ(t) and thus a homomorphism R : ĈF (K1) → ĈF (K0); note
that for 1 ≤ i ≤ g − 1, the curve δi(t) approaches βi, and hence it also approaches γi(t).

If y ∈ Tα ∩ Tγ(t), let yg be the intersection point in y between γg(t) and some αi. If t is large enough,
yg is very close to either an intersection between αi and βg or an intersection between αi and δg. Hence
Tα ∩ Tγ(t) splits up into the image of ι and the image of ρ. As an Abelian group, there is a corresponding

splitting of ĈF (K0) as ĈF (S3) ⊕ ĈF (K1), where the inclusions of these two groups into ĈF (K0) are
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given by I and R. Let L and P be the corresponding projections of ĈF (K0) onto ĈF (S
3) and ĈF (K1)

respectively. We have a split short exact sequence of groups (although not of chain complexes):

0 → ĈF (S3)
I
→ ĈF (K0)

P
→ ĈF (K1) → 0.

To prove Theorem 4.8, we will obtain an honest short exact sequence of chain complexes. The sequence
above will be the highest-order part with respect to area filtrations we will define on each complex.

For use in Section 4.4.3, we will make further requirements which can be satisfied by choosing t large
enough. For each i between 1 and g − 1, there is a doubly periodic domain Pi formed between βi and
γi(t). There is another doubly periodic domain Qi formed between βi and δi(t). Finally, there is a
triply periodic domain P formed between βg, γg(t), and δg. The unsigned area of each of these domains
approaches 0 as t increases. Define

ǫ(t) =
∑

i

A(|Pi|) +A(|Qi|),

where the absolute value signs denote the unsigned area. Then ǫ(t) → 0 as t→ ∞. We may also assume
that, for each t, we have A(|Qi|) = A(|Pi|), so that bounding ǫ also bounds the size of the periodic
domains Qi. Let M be the minimum area of any component of Σ \ {α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg ∪ δg}.
Now choose t large enough that ǫ(t) is very small compared to M . Choosing ǫ(t) < M/4 should suffice.

4.4.2 Proof of the exact triangle given appropriate filtrations.

Recall that we had maps ĈF (S3)
f1
→ ĈF (K0) and ĈF (K0)

f2
→ ĈF (K1) defined by counting holomorphic

triangles in the Heegaard triples (Σ,α,β,γ(t), z) and (Σ,α,γ(t), δ(t), z). These maps were the chain
maps induced by the surgery cobordisms S3 → K0 and K0 → K1. We want the maps in our triangle to
be the maps F1 and F2 induced by f1 and f2 on homology. For convenience, we recall concretely how f1
and f2 work: for x ∈ Tα ∩ Tβ and x′ ∈ Tα ∩ Tγ(t), we have

f1(x) =
∑

{y∈Tα∩Tγ(t),ψ∈π2(x,Θβγ(t),y)|µ(ψ)=0,nz(ψ)=0}

#M(ψ) · y

and
f2(x

′) =
∑

{y′∈Tα∩Tδ(t),ψ∈π2(x′,Θγ(t)δ(t)),y′|µ(ψ)=0,nz(ψ)=0}

#M(ψ) · y′.

As is often the case when constructing a long exact homology sequence, we will obtain our exact
triangle from a short exact sequence of chain complexes. Since f1 and f2 are chain maps, the first

possibility one might consider would be 0 → ĈF (S3)
f1
→ ĈF (K0)

f2
→ ĈF (K1) → 0. However, this

sequence is not exact. Using filtrations and the maps from Section 4.4.1, we will modify f1 by a chain
homotopy to obtain exactness. More precisely, we have the following theorem:

Theorem 4.11. There exists a chain map g1 : ĈF (S3) → ĈF (K0), chain homotopic to f1, such that

0 → ĈF (S3)
g1
→ ĈF (K0)

f2
→ ĈF (K1) → 0

is a short exact sequence of chain complexes.

This result implies Theorem 4.8. Furthermore, the maps ĤF (S3) → ĤF (K0) and ĤF (K0) →

ĤF (K1) are F1 and F2 (since g1 also induces F1 on homology), which are the cobordism-induced maps.

As mentioned earlier, this proof gets the map ĤF (K1) → ĤF (S3) as a connecting homomorphism, but
one can show using other methods that this map is also induced by the natural surgery cobordism. We
will devote the rest of our efforts in Section 4.4.2 and Section 4.4.3 to proving Theorem 4.11.

For the rest of Section 4.4.2, we will assume the following lemma asserting the existence of appropriate
filtrations on the complexes in question:

Lemma 4.12. There exist filtrations on ĈF (S3), ĈF (K0), and ĈF (K1) satisfying the following prop-
erties:
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(a) The filtrations are bounded below.

(b) The boundary maps in the complexes are strictly filtration-decreasing.

(c) The maps I and R are filtration-preserving.

(d) We have f1 = I+ lower order terms; in other words, for x ∈ Tα ∩ Tβ, f1(x)−I(x) < I(x)

in the filtration on ĈF (K0).

(e) We have f2|imR = P+ lower order terms; in other words, for y ∈ Tα ∩ Tδ(t), f2(Ry)−y <

y in the filtration on ĈF (K1).

(f) The composition f2 ◦ f1 is chain homotopic to zero via a chain homotopy H : ĈF (S3) →

ĈF (K1) which is filtration-decreasing, meaning that for x ∈ Tα ∩ Tβ, RHx < Ix in the

filtration on ĈF (K0).

The lemma will be proved in Section 4.4.3, with the exception of the existence of H . To prove that
part would require a discussion of coherent orientation systems for moduli spaces, and we have avoided
mention of these.

Given Lemma 4.12, we can prove Theorem 4.11. We begin by defining a right inverse for f2. By
Lemma 4.12, we can write f2 ◦R = id+N , where N is strictly filtration-decreasing. Let

R′ := R ◦
∞∑

k=0

(−1)kN◦k.

Because the filtration on ĈF (K1) is bounded below, sufficiently high powers of N are zero, so the sum is
finite and hence well-defined. We have f2 ◦R

′ = (id+N) ◦
∑∞

k=0(−1)kN◦k = id, so R′ is a right inverse
for f2. This already shows f2 is surjective. R′ is a sum of powers of a filtration-decreasing map, so it is
filtration non-increasing.

We can also use R′ to define g1: let

g1 := f1 − (∂R′H + R′H∂).

Then g1 is chain homotopic to f1 via the chain homotopy R′H . Furthermore, since ∂ and H decrease
filtration and R′ does not increase it, while f1 = I+ lower order terms by Lemma 4.12, we have g1 = I+
lower order terms. Say g1 = I + E, where E satisfies E < I. Postcomposing with L, we get L ◦ g1 =
id+(L ◦ E). Because I preserves filtration, E decreases it, and we know L does not increase it. Hence

we may write g1 = id+N ′ where N ′ strictly decreases the filtration on ĈF (S3). Now define

L′ =

∞∑

k=0

(−1)k(N ′)◦k ◦ L.

Again, the sum defining L′ is finite, and L′ ◦ g1 = (
∑∞

k=0(−1)k(N ′)◦k)(id+N ′) = id. Hence L′ is a left
inverse for g1, so g1 is injective.

To check exactness in the middle term, first note that by Lemma 4.12,

f2 ◦ g1 = f2 ◦ f1 − f2(∂R
′H +R′H∂)

= f2 ◦ f1 − (∂(f2R
′)H + (f2R

′)H∂)

= f2 ◦ f1 − (∂H +H∂)

= 0.

So we know im g1 ⊂ ker f2; in other words, we know our sequence is a chain complex. We want to show
its homology is zero. It is a filtered chain complex because we have filtrations on all groups in question
and the “differentials” g1 and f2 are filtration non-increasing. Hence we can compute the homology of
the complex via a spectral sequence. The E1 term is obtained by replacing the maps in the complex
by their filtration-preserving parts and taking homology. This procedure amounts to replacing g1 by I
and f2 by P , obtaining the sequence of Section 4.4.1, and taking homology. But this sequence is exact.
Hence the E1 term of the sequence is already 0, so the homology of the complex we started with must
also be 0. Thus im g1 = ker f2, and we are done.
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4.4.3 Construction of filtrations with the right properties.

In this section, we prove Lemma 4.12. We are given a Heegaard quadruple (Σ,α,β,γ(t), δ(t), z), with
Yαβ = S3, Yαγ(t) = K0, and Yαδ(t) = K1. Thus we have area filtrations Farea

S3 , Farea
K0

, and Farea
K1

on

ĈF (S3), ĈF (K0), and ĈF (K1) defined by areas of disks, triangles, and squares as in Section 2.6.6.

These, unfortunately, do not quite give us the filtrations we want on ĈF (S3), ĈF (K0), and ĈF (K1),
since the maps I and R do not preserve them. However, they are almost the correct filtrations. We will
start with the area filtration FK0 := Farea

K0
on ĈF (K0) from triangles and use I and R to transport

it to ĈF (S3) and ĈF (K1). We will then show that the resulting filtrations FS3 and FK1 on ĈF (S3)

and ĈF (K1) differ from Farea
S3 and Farea

K1
by no more than ǫ(t). This will imply that FS3 and FK1 are

actually filtrations, i.e. that the differential decreases them.
We now fill in the details. For a generator x of ĈF (S3), define FS3(x) := FK0(I(x)). For a

generator y of ĈF (K1), define FK1(y) := FK0(R(y)). Then, by decree, I and R preserve filtration. All
three filtrations are bounded below because they are defined on finitely-generated chain complexes. The
following proposition shows that the differential is strictly filtration-decreasing:

Proposition 4.13. The differential strictly decreases all three filtrations FS3 , FK0 , and FK1 .

Proof. For FK0 , the result follows from Section 2.6.6.
For FS3 , suppose that x ∈ Tα ∩ Tβ. To compute Farea

S3 (x), we can choose a disk φ ∈ π2(x0,x);
then Farea

S3 (x) = −A(D(φ)). But x is very close to ι(x) ∈ Tα ∩ Tγ(t), and so there is a small triangle
ψ0 ∈ π2(x0,Θβγ(t), ι(x)). Since the support of D(ψ0) is contained inside the total support of the periodic
domains, we have |A(D(ψ0))| < ǫ(t). Now the concatenation φ ∗ ψ0 is a triangle in π2(x0,Θβγ(t), ι(x)),
so it may be used to compute FK0(ι(x)) =: FS3(x). We thus have FS3(x) = −A(D(φ ∗ ψ0)) =
−A(D(φ)) −A(D(ψ0)) = Farea

S3 (x)−A(D(ψ0)). Hence

|FS3(x)−Farea
S3 (x)| ≤ |A(D(ψ0))| < ǫ(t).

This inequality holds for all x ∈ Tα ∩ Tβ .
Now suppose x and x′ are two elements of Tα ∩ Tβ , and suppose φ ∈ π2(x,x

′) represents a differ-
ential. Then the difference in Farea

S3 between x and x′ is at least A(D(φ)). But D(φ) is a positive sum
of components of Σ \ {α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg}, and each one of these components has area at least
M . Hence the difference in Farea

S3 between x and x′ is at least M . But Farea
S3 (x) and Farea

S3 (x′) differ
from FS3(x) and FS3(x′) by at most ǫ(t), and so FS3(x) − FS3(x′) is at least M − 2ǫ(t). Since ǫ(t) is
very small compared to M , we see that the differential decreases FS3 .

Next we consider FK1 . Suppose y ∈ Tα ∩ Tδ(t). Then ρ(y) ∈ Tα ∩ Tγ(t), and we can choose
a triangle ψ ∈ π2(x0,Θβγ(t), ρ(y)). We have FK1(y) = FK0(ρ(y)) = −A(D(ψ)). There is also a
small triangle ψ0 in π2(ρ(y),Θγ(t)δ(t),y). The support of D(ψ0) is contained in the support of the
periodic domains, so |A(D(ψ0))| < ǫ(t). But we can concatenate the triangles ψ and ψ0 to obtain
a “pinched” square ψ ∗ ψ0 ∈ π2(x0,Θβγ(t),Θγ(t)δ(t),y). Such squares compute Farea

K1
, so we have

Farea
K1

(y) = −A(D(ψ ∗ ψ0)) = −A(D(ψ)) −A(D(ψ0)) = FK1(y)−A(D(ψ0)). Hence

|FK1(y)−Farea
K1

(y)| ≤ |A(D(ψ0))| < ǫ(t).

This inequality holds for all y ∈ Tα ∩ Tδ(t).
Suppose y and y′ are in Tα ∩ Tδ(t) and φ ∈ π2(y,y

′) represents a differential. The difference in
Farea
K1

between y and y′ is at least A(D(φ)). But D(φ) is a positive sum of components of Σ \ {α1 ∪
· · · ∪ αg ∪ δ1(t) ∪ · · · ∪ δg−1(t) ∪ δg}. Furthermore, since each δi(t) is very close to βi for 1 ≤ i ≤ g − 1,
we may make a small (i.e. supported in the periodic domains and hence of size ≤ ǫ(t)) adjustment to
D(φ) to obtain a positive sum of components of Σ \ {α1 ∪ · · · ∪αg ∪ β1 ∪ · · · ∪ βg−1 ∪ δg}. This modified
domain has area at leastM , so we can conclude that A(D(φ)) ≥M − ǫ(t). Hence the difference in Farea

K1

between y and y′ is at least M − ǫ(t). But, again, Farea
K1

differs from FK1 by at most ǫ(t), so we can
conclude that FK1(y) − FK1(y

′) is at least M − 3ǫ(t). Since ǫ(t) is small compared to M , we see that
the differential decreases FK1 .

Next we want decompositions f1 = I+ lower order and f2|imR = P+ lower order.
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Proposition 4.14. For x ∈ Tα ∩ Tβ, we have f1(x) = I(x)+ lower order terms, and for y ∈ Tα ∩ Tδ(t),
we have f2(R(y)) = y+ lower order terms.

Proof. Consider the small triangle ψ0 ∈ π2(x,Θβγ(t), ι(x)). Using a characterization of Maslov indices
of triangles similar to that found in Section 3.3.2 for disks, one can show that µ(ψ0) = 0. The usual
argument with the Riemann mapping theorem then shows that #M(ψ0) = ±1, and if we were careful
with orientation systems, we could deduce #M(ψ0) = 1. Hence one component of f1(x) is ι(x) = I(x).

We would like to show that any other y ∈ Tα ∩ Tγ(t) appearing in the expression for f1(x) must be
of lower order than ι(x). Suppose that, for some y 6= ι(x), there exists ψ ∈ π2(x,Θβγ(t),y) representing
a component of f1(x). A quick glance at the periodic domains shows that only D(ψ0) can be entirely
supported in them; thus, D(ψ) cannot be supported inside the periodic domains. We know D(ψ) is a
positive sum of components of Σ \ {α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg ∪ γ1(t) ∪ · · · ∪ γg(t)}. However, since
γi(t) is very close to βi for 1 ≤ i ≤ g − 1, we may assume (after a modification of size < ǫ(t)) that D(ψ)
is a positive sum of components of Σ \ {α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg ∪ γg(t)}. Since γg(t) is very close to
the concatenation of βg and δg, and since D(ψ) is not supported entirely in the narrow region between
γg(t), βg, and δg, we may further assume (with another small error term < ǫ(t)) that D(ψ) is a positive
sum of components of Σ \ {α1 ∪ · · · ∪αg ∪ β1 ∪ · · · ∪ βg ∪ δg}. Hence, up to a correction of 2ǫ(t), we have
A(D(ψ)) ≥M , or in other words A(D(ψ)) ≥M − 2ǫ(t).

Choose φ ∈ π2(x0,x) with nz(φ) = 0; then the concatenation φ ∗ ψ computes FK0(y), so we have

FK0(y) = −A(D(φ)) −A(D(ψ))

≤ −A(D(φ)) −M + 2ǫ(t).

But we also have −A(D(φ)) = Farea
S3 (x), and we saw in the proof of Proposition 4.13 that Farea

S3 (x)
is nearly equal to FS3(x) = FK0(ι(x)). In particular, Farea

S3 (x) ≤ FK0(ι(x)) + ǫ(t), and so FK0(y) ≤
FK0(ι(x))−M + 3ǫ(t). Rearranging terms,

FK0(y)−FK0(ι(x)) ≤ −M + 3ǫ(t) < 0,

and we have verified that f1 = I+ lower order terms.
Now we deal with f2. If y ∈ Tα ∩ Tδ, consider f2(R(y)). As above, there is a small trian-

gle in π2(ρ(y),Θγ(t)δ(t),y) giving rise to a component of f2(R(y)) on y with coefficient +1. Sup-
pose w ∈ Tα ∩ Tδ(t) is any other point appearing in the expression for f2(R(y)), via some triangle
ψ ∈ π2(ρ(y),Θγ(t)δ(t),w). We want to show that w is lower in the filtration that y, or equivalently

(since R preserves filtration) that ρ(w) is lower than ρ(y) in the filtration on ĈF (K0).
First, considerD(ψ). By arguments analogous to those above, we may conclude that A(D(ψ)) ≥M−

2ǫ(t). Now, to compute the filtration gradings of ρ(y) and ρ(w), pick triangles ψy in π2(x0,Θβγ(t), ρ(y))
and ψw in π2(x0,Θβγ(t), ρ(w)) satisfying nz(ψy) = nz(ψw) = 0. Then FK0(ρ(y)) = −A(D(ψy)) and
FK0(ρ(w)) = −A(D(ψw)). The concatenation ψy ∗ψ is a square in π2(x0,Θβγ(t),Θγ(t)δ(t),w). But if ψ0

denotes the small triangle in π2(ρ(w),Θγ(t)δ(t),w), then the concatenation ψw ∗ ψ0 is another square in
π2(x0,Θβγ(t),Θγ(t)δ(t),w). Since all periodic domains have zero area, both ψy ∗ψ and ψw ∗ψ0 must have
the same area. We can conclude that A(D(ψy)) +A(D(ψ)) = A(D(ψw)) +A(D(ψ0)), or (rearranging
and relabelling) that FK0(ρ(w)) − FK0(ρ(y)) = A(D(ψ0)) − A(D(ψ)). But A(D(ψ0)) ≤ ǫ(t), while
A(D(ψ)) ≥M − 2ǫ(t). Thus,

FK0(ρ(w))−FK0(ρ(y)) ≤ −M + 3ǫ(t) < 0,

and we have shown that f2|imR = P+ lower order terms as desired.

We are left with the final assertion of Lemma 4.12. As mentioned above, we will simply cite the proof
of Theorem 8.16 of [7] for the existence of H . In fact, H is defined by counting holomorphic squares: if
x ∈ Tα ∩ Tβ, then we have

H(x) :=
∑

{y∈Tα∩Tδ(t),ϕ∈π2(x,Θβγ(t),Θγ(t)δ(t),y)|µ(ϕ)=−1,nz(ϕ)=0}

#M(ϕ) · y.

To apply the construction of [7], one first shows that for suitable orientation systems, f2 ◦ f1 induces
the zero map on homology. For details, see Section 9 of [6]. We will simply show that, given this H , it
decreases filtrations in the sense that R ◦H < I.
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Proposition 4.15. For x ∈ Tα ∩ Tβ, we have R(H(x)) < I(x).

Proof. Suppose H(x) has nonzero coefficient on some y ∈ Tα ∩ Tδ(t) coming from some square ϕ ∈
π2(x,Θβγ(t),Θγ(t)δ(t),y). We want to show that ρ(y) < ι(y) in FK0 . Pick ψ ∈ π2(x,Θβ,γ(t), ρ(y)) with
nz(φ) = 0. There is also a small triangle ψ0 ∈ π2(ρ(y),Θγ(t)δ(t),y). The concatenation ψ ∗ψ0 is a square
in π2(x,Θβγ(t),Θγ(t)δ(t),y), and nz(ψ ∗ ψ0) = 0. Thus ϕ and ψ ∗ ψ0 differ by a periodic domain. Since
periodic domains have zero area, we see that A(D(ϕ)) = A(D(ψ)) +A(D(ψ0)).

Pick φ ∈ π2(x0,x) with nz(φ) = 0. Then φ ∗ ψ is an element of π2(x0,Θβγ(t), ρ(y)) with nz = 0, so
we have −A(D(φ)) − A(D(ψ)) = FK0(ρ(y)). Furthermore, by the proof of Proposition 4.13, we know
that −A(D(φ)) = Farea

S3 (x) is no more than ǫ(t) away from FK0(ι(x)). Hence, up to an error term of
ǫ(t), we have FK0(ι(x))−FK0(ρ(y)) = A(D(ψ)). More precisely, we have

FK0(ι(x))−FK0(ρ(y)) ≥ A(D(ψ)) − ǫ(t)

= A(D(ϕ)) −A(D(ψ0))− ǫ(t)

≥ A(D(ϕ)) − 2ǫ(t).

But inspection shows that ϕ cannot be supported entirely inside the periodic domains. The arguments
of Proposition 4.14, applied to the square ϕ rather than to triangles, thus imply that A(D(ϕ)) must be
at least M − 2ǫ(t), so in the end we have

FK0(ι(x))−FK0(ρ(y)) ≥M − 4ǫ(t) > 0.

This inequality proves the proposition and hence Lemma 4.12, Theorem 4.11, and Theorem 4.8.

4.5 The vanishing of HF+(K0, i) when i 6= 0.

Since K1 ≃ S3, we have ĤF (K1) ≃ Z. Thus, the surgery exact triangle is

Z

{{ww
ww

ww
ww

w

ĤF (K0)
// Z

ϕ

^^=
=
=
=
=
=
=
=

While one could show that ϕ = 0, for our purposes this fact is unnecessary. The map ϕ is either zero or
it is multiplication by some nonzero integer m. We consider both cases.

Suppose ϕ = 0. Then ĤF (K0) ≃ Z2. However, ĤF (K0) can be written as ⊕i∈ZĤF (K0, i). Since

b1(K0) = 1, we must have χ(ĤF (K0, i)) = 0 for all i by Proposition 2.39. Hence both copies of Z in

ĤF (K0) must live in the same Spinc structure.

Assume ĤF (K0, i) = Z2 and ĤF (K0, j) = 0 for all j 6= i. Proposition 2.38 tells us that ĤF (K0,−i)

is Z2 as well, so we must have i = −i. In other words i = 0, and we have proved ĤF (K0, i) = 0 for i 6= 0
assuming ϕ = 0. By Proposition 2.40, HF+(K0, i) = 0 for i 6= 0.

On the other hand, suppose ϕ is multiplication by m 6= 0. Then ϕ is injective, so we have a short
exact sequence

0 → Z
·m
→ Z → ĤF (K0) → 0.

Therefore, ĤF (K0) ≃ Z/m, a cyclic group. Again, we can conclude that ĤF (K0) is supported in only
one Spinc structure and (by conjugation symmetry) that this Spinc structure must be i = 0. Hence

ĤF (K0, i) = 0 for i 6= 0. By Proposition 2.40, HF+(K0, i) = 0 for i 6= 0.

4.6 ĤFK(S3, K) and HF+(K0) in the highest nonzero Spinc structure.

In this section, we will prove the following statement:

Proposition 4.16. Let d be the largest integer such that ĤFK(S3,K, d) 6= 0, and suppose d > 1. (In

fact, by Theorem 4.5, d = g, the Seifert genus of K). Then ĤFK(S3,K, d) ≃ HF+(K0, d− 1).
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Proof. Consider the following short exact sequence of subcomplexes of CFK∞(S3,K):

0 → CFK{i<0,j≥d−1}(S3,K) → CFK{i≥0 or j≥d−1}(S3,K) → CFK{i≥0}(S3,K) → 0.

As usual, there is an associated long exact sequence in homology, in the form of a triangle since there
is no natural absolute Z-grading. To make use of it, we want to identify the homology of these three

complexes. We first claim that H∗(CFK
{i<0,j≥d−1}(S3,K)) = ĤFK(S3,K, d). Indeed, the filtrations

on the complex allow us to compute its homology by cancelling differentials step-by-step. The first step
is to consider only differentials which keep both i and j fixed. With these differentials, the complex

splits up as ⊕{i<0,j≥d−1}ĈFK(S3,K, i + j). Hence the result of cancelling these filtration-preserving

differentials is ⊕{i<0,j≥d−1}ĤFK(S3,K, i+ j). But, by assumption, ĤFK(S3,K,m) = 0 for m ≥ d, so

this sum is just ĤFK(S3,K, d) as claimed.
Next, we make use of Theorem 3.5 to identify the homology of CFK{i≥0 or j≥d−1}(S3,K), or equiv-

alently CFK{i≥0 or j≥0}(S3,K, d − 1), as HF+(Kn, [d − 1]) for a sufficiently large choice of n. Finally,
to compute H∗(CFK

{i≥0}(S3,K)), we simply note that, ignoring the j-filtration, CFK{i≥0}(S3,K) =
CF+(S3). Hence, its homology is HF+(S3).

We can compare the exact triangle just derived with the integer surgeries triangle:

HF+(S3)

wwooooooooooo

ĤFK(S3,K, d) // HF+(Kn, [d− 1])

Θ

hhPPPPPPPPPPPPP

HF+(S3)

vvnnnnnnnnnnnn

HF+(K0, d− 1) // HF+(Kn, [d− 1])

ΦW

hhQQQQQQQQQQQQ

The map ΦW is induced from the cobordism W from K1 to S3. In the integer surgeries triangle, we
would usually have

∑
m≡d−1 mod nHF

+(K0,m) in the left-hand corner. However, n is large compared
to d, so any other integers m ≡ d− 1 mod n are much greater than d − 1 in absolute value. Since d is
the Seifert genus of K, the adjunction inequality (Theorem 2.41) tells us that HF+(K0,m) = 0 for all
such m. Thus, only one term appears in the exact triangle.

While these triangles suggest a relationship between ĤFK(S3,K, d) and HF+(K0, d − 1), we need
more information about the maps in the triangles to derive equality. Specifically, we will look at the maps
ΦW and Θ. We first note that Θ is surjective. Indeed, for a sufficiently large choice of absolute degree N ,

the projection of CFK
{i≥0 or j≥d−1}
deg≥N (S3,K) onto CFK

{i≥0}
deg≥N (S3,K) is an isomorphism, where these two

complexes are generated by elements of CFK{i≥0 or j≥d−1}(S3,K) and CFK{i≥0}(S3,K), respectively,
with absolute grading ≥ N . This statement holds because the complex CFKi=0(S3,K) has finitely
many generators (corresponding to elements of Tα ∩ Tβ), and the absolute degrees of these generators

are thus bounded above, say byM . For N ≥M , then, any generator of CFK
{i≥0 or j≥d−1}
deg≥N (S3,K) which

has degree ≥ N must actually have i ≥ 0. Therefore, since Θ is the map on homology induced by a
chain map which is an isomorphism in sufficiently large degrees, Θ is also an isomorphism in sufficiently
large degrees. Writing HF+(S3) as Z[U−1], we see that U−k is in the image of Θ for all sufficiently large
k. But since Θ is U -equivariant, this fact actually implies that U−k is in the image of Θ for all k ≥ 0.
Hence Θ is surjective.

The surjectivity of ΦW is a bit less elementary. We know from Section 4.3.2 that ΦW breaks apart
as a sum over Spinc structures on W . First we will show that Θ is the component of ΦW associated to
one particular Spinc structure on W . Next, we will establish that the components of ΦW corresponding
to all the other Spinc structures are of lower order with respect to the absolute grading. An algebraic
argument will then show that ΦW is surjective, and a further algebraic manipulation will conclude the
proof.

To identify Θ as coming from a Spinc structure on W , consider the following diagram detailing the
identifications made above:
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CFK{i≥0 or j≥d−1}(S3,K)
proj // CFK{i≥0}(S3,K)

CFK{i≥0 or j≥0}(S3,K, d− 1) CF+(S3)

CF+(Kn, [d− 1])

ΦW,r

44iiiiiiiiiiiiiiiiii

Ψ ≃

OO

Here Ψ is the map from Theorem 3.5, and ΦW,r is the map induced by some Spinc structure r on W .
Taking the top path around the diagram induces Θ on homology. We claim that the diagram commutes
when r is chosen so that 〈c1(r), [S]〉 = 2(d − 1) + n, where [S] generates H2(W ). In the notation of
Section 2.6.5, r = rd−1.

The claim follows from an analogue of Lemma 3.20. More precisely, suppose r = sw(ψ) for some
triangle ψ ∈ π2(x,Θβγ ,y), where (Σ,α,β) is a Heegaard diagram for Kn and (Σ,α,γ) is a Heegaard
diagram for S3 as in the definition of Ψ. Here, x ∈ Tα ∩ Tβ and y ∈ Tα ∩ Tγ . Then

〈c1(r), [S]〉 − n = 〈c1(s(y)), [F̂ ]〉+ 2(nw(ψ)− nz(ψ)).

The definition of Ψ counts only triangles ψ with (1/2)〈c1(s(y)), [F̂ ]〉+nw(ψ)−nz(ψ) = d−1, and we see
that these are precisely the triangles belonging to the Spinc structure r with 〈c1(r), [S]〉 = 2(d− 1) + n.
In other words, they are exactly the triangles making up ΦW,rd as claimed.

Now, the components of ΦW other than Θ will all be induced by Spinc structures r
′ on W with

〈c1(r′), [S]〉 = 2m+ n for some m ≡ d − 1 mod p. For sufficiently large n, all such m will be very large
in absolute value. But if 〈c1(r′), [S]〉 = 2m + n, then the map induced by r shifts the absolute grading

by c1(r
′)2+1
4 = −(2m+n)2/n+1

4 = −(2m+n)2+n
4n by Proposition 2.69, and so when n is large the decrease is

minimized (with respect to the constraint m ≡ d− 1 mod n) when m = d− 1.
Write ΦW = Θ+ L, where L contains the contributions from all the other Spinc structures. Since Θ

is surjective, we can choose a right inverse R for Θ (since HF+(S3) is a free Abelian group). Define an
automorphism K of CF+(Kn, [d− 1]) by the formula

K =
∑

k≥0

(−1)k(R ◦ L)◦k.

Since R increases the absolute grading by (2(d−1)+n)2−n
4n , while L decreases it by at least (2m+n)2−n

4n for
m >> d − 1, we see that R ◦ L decreases the absolute grading, and so (since the absolute grading is
bounded below in HF+) we have (R ◦ L)◦k = 0 for large enough k. Hence the sum in the definition of
R′ is well-defined. In fact, K is the identity plus a term which lowers absolute degree, and this lower-
degree term is nilpotent because the absolute grading is bounded below. Thus K is an automorphism of
CF+(Kn, [d− 1]). Finally,

ΦW ◦K = (Θ + L) ◦K

= Θ+ L− (Θ + L) ◦ (R ◦ L) + (Θ + L) ◦ (R ◦ L)◦2 − · · ·

= Θ+ L− L+ L ◦R ◦ L− L ◦R ◦ L+ · · ·

= Θ.

The first thing we can conclude from the above computation is that ΦW is surjective because Θ is.
Now the exact triangles become short exact sequences:

0 → ĤFK(S3,K, d) → HF+(Kn, [d− 1])
Θ
→ HF+(S3) → 0

and

0 → HF+(K0, d− 1) → HF+(Kn, [d− 1])
ΦW→ HF+(S3) → 0.

Hence ĤFK(S3,K, d) ≃ kerΘ and HF+(K0, d−1) ≃ kerΦW . But the automorphism K above restricts

to an isomorphism of kerΘ with kerΦW . Therefore, ĤFK(S3,K, d) ≃ HF+(K0, d− 1) as desired.
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4.7 Heegaard Floer homology with twisted coefficients.

4.7.1 The twisted-coefficient groups.

We discuss here the simplest case of Heegaard Floer homology with twisted coefficients. Suppose b1(Y ) =

1. Then H1(Y ) = Z, and the Heegaard Floer homology of Y with twisted coefficients, ĤF (Y ), will be a
module over the group ring Z[H1(Y )] = Z[Z] = Z[t±1], the ring of Laurent polynomials. For a discussion
of the general case, see Section 8 of [6].

To make the definition, pick a weakly admissible Heegaard diagram (Σ,α,β, z) for Y . Choose a
designated point x0 ∈ Tα ∩ Tβ and a disk φx ∈ π2(x0,x) for each x ∈ Tα ∩ Tβ . Then, for each x and
y in Tα ∩ Tβ, we may identify π2(x,y) with π2(x0,x0) by mapping φ ∈ π2(x,y) to φ−1

y ∗ φ ∗ φx in
π2(x0,x0).

The choice of φx0
∈ π2(x0,x0) allows us to further define a map from π2(x0,x0) to H

1(Y ). It takes a
disk φ and looks at the difference between its domain D(φ) and the domain D(φ0) of φ0. This difference
is a periodic domain and hence defines an element of H2(Y ) = H1(Y ).

Finally, choose an identification ofH1(Y ) with Z. These choices give rise to a mapping A : π2(x,y) →
Z for any x,y, enabling the following definition:

Definition 4.17. Suppose s ∈ Spinc(Y ).

(a) As a group, ĈF (Y, s) is defined to be ĈF (Y, s)⊗Z Z[t±1].

(b) For x ∈ Tα ∩ Tβ ,

∂(x⊗ 1) :=
∑

{y∈Tα∩Tβ,φ∈π2(x,y)|µ(φ)=1,nz(φ)=0}

#M(φ) · (y ⊗ tA(φ)).

Extending equivariantly in t, we get a differential on ĈF (Y, s). It satisfies ∂2 = 0; we define

ĤF (Y, s) = ker ∂
im∂ .

We have an analogous definition for HF+:

Definition 4.18. Suppose s ∈ Spinc(Y ).

(a) As a group, CF+(Y, s) is defined to be CF+(Y, s)⊗Z Z[t±1].

(b) For x ∈ Tα ∩ Tβ ,

∂([x, i]⊗ 1) :=
∑

{y∈Tα∩Tβ,φ∈π2(x,y)|µ(φ)=1}

#M(φ) · ([y, i− nz(φ)] ⊗ tA(φ)).

Extending equivariantly in t, we get a differential on CF+(Y, s). It satisfies ∂2 = 0; we define

HF+(Y, s) = ker ∂
im∂ .

While we made several choices in the definitions above, the homology groups ĤF (Y, s) and HF+(Y, s)
are independent of them.

Now suppose Y is the zero-surgery K0 on a knot K in S3. Let (Σ,α,β,γ, z) be a Heegaard triple
consistent with the surgery data as in Section 2.6.2. Note that (Σ,α,γ, z) is a Heegaard diagram for
K0. In this case, there is a more concrete way to make the choices described above. Recall that γg is
the Seifert longitude for K. Choose a reference point τ ∈ γg disjoint from the α and β curves. Let V be
the codimension-1 submanifold γ1 × · · · × γg−1 × {τ} ⊂ Tγ . Then if x,y ∈ Tα ∩ Tγ and φ ∈ π2(x,y),
we can define A(φ) to be the intersection number ∂γ(φ) · V . Here, ∂γ(φ) stands for (∂(imφ))∩Tγ . This
choice of A works just as well as the A obtained from making the choices described at the beginning of
the section.
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4.7.2 Statements of the exact triangles with twisted coefficients.

We have versions of the surgery exact triangle and integer surgery triangle using the twisted-coefficient
groups:

Theorem 4.19. There is an exact triangle

ĤF (S3)⊗Z Z[t±1]

wwnnnnnnnnnnnn

ĤF (K0)
// ĤF (K1)⊗Z Z[t±1].

iiSSSSSSSSSSSSSS

The same holds with ĤF replaced by HF+.

Theorem 4.20. Suppose [m] ∈ Z/n. There is an exact triangle

ĤF (S3)⊗Z Z[t±1]

uukkkkkkkkkkkkkk

⊕

m′≡m mod n

ĤF (K0,m
′) // ĤF (Kn, [m])⊗Z Z[t±1].

iiRRRRRRRRRRRRRRRRR

The same holds with ĤF replaced by HF+.

As before, the maps are induced by cobordisms. The one which is relevant for us is the map ĤF (K1)⊗

Z[t±1] → ĤF (S3)⊗Z[t±1]. The corresponding map in the untwisted triangle was induced by the surgery
cobordism W from K1 to S3 and split up according to Spinc structures: ΦW =

∑
r∈Spinc(W ) ΦW,r.

Analogously, we will call the map in the twisted triangle ΦW . To state how ΦW is defined on the
chain level, let τ ′ be a reference point in δg which is disjoint from the other attaching circles. Let
V ′ = δ1 × · · · × δg−1 × {τ ′} ⊂ Tδ. The following equation defines ΦW :

ΦW ([x, i]⊗ tk) =
∑

{y∈Tα∩Tβ,ψ∈π2(x,Θβδ,y)|µ(ψ)=0}

#(M(ψ)) · ([x, i− nz(ψ)]⊗ tk+∂δ(ψ)·V
′

). (5)

As it turns out, there exists some M ∈ Z such that Equation 5 simplifies as follows:

ΦW =
∑

r∈Spinc(W )

ΦW,r ⊗ t
〈c1(r),[S]〉+M

2 . (6)

As usual, [S] is the generator of H2(W ) = Z defined in Section 2.6.4. Also, as we will see, it does not
really matter what the value of M is. Clearly, though, it must have the same parity as 〈c1(r), [S]〉. In
other words, M must be odd since 〈c1(r), [S]〉 is odd for all r ∈ Spinc(W ).

4.7.3 Proposition 4.16 with twisted coefficients.

We have the following twisted analogue of Proposition 4.16:

Proposition 4.21. Suppose d = 1 is the largest integer such that ĤFK(S3,K, d) 6= 0. Then the group

ĤFK(S3,K, 1)⊗Z Z[t±1] is isomorphic to HF+(K0, 0).

Proof. The proof of Proposition 4.16 carries over word-for-word until we introduce the integer surgeries
exact triangle. In the twisted case, we use the twisted version of the integer surgeries triangle. The two
triangles we want to relate are

HF+(S3)⊗ Z[t±1]

ttjjjjjjjjjjjjjjjj

ĤFK(S3,K, 1)⊗ Z[t±1] // HF+(Kn, [0])⊗ Z[t±1]

Θ⊗id
iiTTTTTTTTTTTTTTTT
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and
HF+(S3)⊗Z Z[t±1]

vvlllllllllllll

HF+(K0, 0) // HF+(Kn, [0])⊗Z Z[t±1].

ΦW

jjUUUUUUUUUUUUUUUU

The surjectivity of Θ ⊗ id follows from the surjectivity of Θ in the proof of Proposition 4.16. For
ΦW , we previously had ΨW = Θ + L, where L represents lower-order terms with respect to the area

filtration. This formula, together with Equation 6 for ΦW , becomes ΦW = Θ ⊗ t
n+M

2 + L′. Here L′

is still a sum of terms which are lower-order with respect to the area filtration (which, in this context,
ignores t). To verify this equation, note that if r is the Spinc structure on W giving rise to Θ, then
〈c1(r), [S]〉 = 2(d− 1) + n = n since d = 1.

Now, if R is a right inverse for Θ as before, then R ⊗ id is a right inverse for Θ ⊗ id. The same

algebraic argument, using R ⊗ t−
n+M

2 in place of R and L′ in place of L, gives us an automorphism

K ′ =
∑

k≥0(−1)k((R ⊗ t−
n+M

2 ) ◦ L′)◦k of CF+(K1, [0])⊗ Z[t±1]. We have ΦW ◦K = Θ⊗ t
n+M

2 , since

ΦW ◦K ′ = (Θ ⊗ t
n+M

2 + L′) ◦K ′

= Θ⊗ t
n+M

2 + L′ − (Θ⊗ t
n+M

2 + L′) ◦ (R⊗ t−
n+M

2 ◦ L′)

+ (Θ⊗ t
n+M

2 + L′) ◦ (R ⊗ t−
n+M

2 ◦ L′)◦2 − · · ·

= Θ⊗ t
n+M

2 + L′ − L′ + L′ ◦ (R′ ⊗ t−
n+M

2 ) ◦ L′ − L′ ◦ (R ⊗ t−
n+M

2 ) ◦ L′ + · · ·

= Θ⊗ t
n+M

2 .

But t
n+M

2 is invertible in Z[t±1]. Hence ΦW is surjective and its kernel is isomorphic (via (K ′)−1 ⊗

t
n+M

2 ) to that of Θ⊗ id, completing the proof.

4.8 The vanishing of HF+(K0)⊗Z[t±1] Z[t
±1, (t− 1)−1].

Since K1 ≃ S3, we have HF+(K1) = HF+(S3) = Z[U−1]. Hence the twisted surgery exact triangle
becomes

Z[U−1, t±1]

wwppppppppppp

HF+(K0) // Z[U−1, t±1].

ggOOOOOOOOOOO

Inverting t− 1, we get

Z[U−1, t±1, (t− 1)−1]

sshhhhhhhhhhhhhhhhhhh

HF+(K0)⊗Z[t±1] Z[t
±1, (t− 1)−1] // Z[U−1, t±1, (t− 1)−1].

ΦW

jjTTTTTTTTTTTTTTTT

Here, W is the surgery cobordism from K1 to S3. We will be done if we can show that the right leg
ΦW of the triangle is an isomorphism. Our plan of attack will be to show that, in terms of the absolute
Q-grading, ΦW is an isomorphism plus a lower-order term. Using algebra, we will then be able to show
that ΦW is itself an isomorphism.

As in Section 2.6.5, let rm be the Spinc structure on W with 〈c1(rm), [S]〉 − n = 2m. By Proposi-

tion 2.69, the map ΦW,rm shifts degree by −(2m+1)2+1
4 = −m2 − m. This shift is always ≤ 0, and it

equals zero precisely when m = 0 or m = −1. Thus, only the Spinc structures r0 and r−1, with first
Chern classes [S]∗ and −[S]∗, contribute to the highest-degree term of ΦW .

Using Equation 6, we may write the highest-degree term of ΦW as ΦW,r0 ⊗ t
1+M

2 +ΦW,r−1 ⊗ t
−1+M

2 .
Both ΦW,r0 and ΦW,r−1 are maps from Z[U−1] to Z[U−1] which do not decrease absolute degrees. Thus,
they are multiplication by integers c0 and c−1 respectively. The highest-degree term of ΦW is therefore

c0t
1+M

2 + c−1t
−1+M

2 .
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Lemma 4.22. Both c0 and c−1 are ±1.

Proof. By Proposition 9.4 of [4], both ΦW,r0 and ΦW,r−1 are isomorphisms on HF∞. Their domain and
codomain are both Z[U,U−1], so both maps are multiplication by ±Uk for some k. But the generator of
HF∞(K1) has the same absolute degree as the generator of HF∞(S3), namely 0, because K1 is equal
to S3. Thus, since ΦW,r0 and ΦW,r−1 preserve absolute degrees, they must both be multiplication by ±1.

To relate this result to the maps on HF+, consider the exact sequence of Theorem 2.35. Usually,
we only have an exact triangle. However, S3 has a Heegaard diagram with no differentials. Thus,
we can derive this sequence from a short exact sequence of complexes 0 → CF−(S3) → CF∞(S3,→
CF+(S3) → 0 in which taking homology changes nothing. Theorem 2.35 becomes a short exact sequence,
and Theorem 2.66 gives us a diagram

0 // HF−(S3) //

��

HF∞(S3) //

ΦW,r0=±1

��

HF+(S3) //

ΦW,r0

��

0

0 // HF−(S3) // HF∞(S3) // HF+(S3) // 0.

Since every element of HF+(S3) comes from HF∞(S3), we see that ΦW,r0 is multiplication by ±1 on
HF+(S3). The same holds for ΦW,r−1 .

Hence the highest-degree term of ΦW is multiplication by either ±tM
′

(t+1) or ±tM
′

(t− 1) for some
integer M ′. Actually, ΦW must be 0 when t is set equal to 1, so the second option is correct. This fact
is not necessary for our purposes, though; if the first option were correct instead, we could simply have
inverted t+1 instead of t−1. In any case, the highest-degree term of ΦW is an isomorphism. An algebraic
argument like the one in the proof of Theorem 3.4, using the absolute Q-grading rather than the area
filtration, implies that ΦW is itself an isomorphism. Therefore HF+(K0) ⊗Z[t±1] Z[t

±1, (t − 1)−1] = 0,
completing the proof.

4.9 Conclusion of the proof of Theorem 4.3.

The unknot is the unique knot with genus 0, so it will suffice to prove that the genus g of K is 0.

By Theorem 4.5, we know that g is the largest value of d for which ĤFK(S3,K, d) 6= 0. If g > 1,
then Proposition 4.16 tells us that HF+(K0, g − 1) = 0, contradicting Section 4.5. If g = 1, then
Proposition 4.21 tells us that HF+(K0) ⊗Z[t−±1] Z[t

±1, (t − 1)−1] = 0. In particular, for any Z[t±1]-
algebra A in which t− 1 is invertible, we see that HF+(K0)⊗Z[t±1] A = 0.

Taking A = Q(t), it follows that HF+(K0, 0) ⊗Z[t±1] Q(t) = 0, so ĤFK(S3,K, 1) ⊗ Q(t) = 0 by

Section 4.8. Hence ĤFK(S3,K, 1)⊗Q = 0. Similarly, for any prime p, we can take A = (Z/p)(t). Thus

ĤFK(S3,K, 1)⊗ (Z/p)(t) = 0, so ĤFK(S3,K, 1)⊗ (Z/p) = 0. We can conclude that ĤFK(S3,K, 1) =
0, another contradiction. Therefore g = 0 as claimed, proving Theorem 4.3 and hence Theorem 4.2 and
Theorem 4.1.
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[11] Peter Ozsváth and Zoltán Szabó. Holomorphic disks, link invariants and the multi-variable Alexan-
der polynomial. Algebr. Geom. Topol., 8(2):615–692, 2008.

[12] Jacob Rasmussen. Floer homology of surgeries on two-bridge knots. Algebr. Geom. Topol., 2:757–789
(electronic), 2002.

[13] Jacob Rasmussen. Floer homology and knot complements. PhD thesis, Harvard University, 2003.
math.GT/0306378.

[14] Vladimir Turaev. Torsion invariants of Spinc-structures on 3-manifolds. Math. Res. Lett., 4(5):679–
695, 1997.

60


