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The Four Square Theorem

Theorem
Let n ∈ N, then,

r4(n) = #{(a, b, c, d) ∈ Z4 | a2 + b2 + c2 + d2 = n} =
∑

d |n,d 6∈4Z
8d

Theta functions

Define θ(z) =
∑

m∈Z
e2πizm2 on H.

θ(z)k =
∑
n∈Z

( ∑
(a1,...ak )|

∑
a2
i =n

1
)

e2πizn =
∑
n∈Z

rk(n)e2πizn

So, θ(z)4 =
∑

n∈Z
r4(n)e2πizn
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Modular forms on SL(2, Z)

Definition
Let k be any integer. A holomorphic function f : H→ C is a
modular form of weight k if

I f
(

az+b
cz+d

)
= (cz + d)k f (z) for all

(
a b
c d

)
∈ SL(2,Z).

I f is holomorphic at ∞.

Holomorphic at infinity
We have f (z + 1) = (1)k f (z) = f (z).
Hence f (z) = g(e2πiz) for some holomorphic g : D \ {0} → C.
Thus g(q) has a laurent series g(q) =

∞∑
n=−∞

anqn where q = e2πiz .

We say f is holomorphic at ∞ if an = 0 for all n < 0.

Additionally, f is a cusp form if a0 = 0
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Modular forms on SL(2, Z)

Example
Consider the functions Gk(z) =

∑
(m,n)∈Z2\(0,0)

1
(mz+n)k for k ≥ 3.

SL(2,Z) is generated by matrices S =
(

1 1
0 1

)
,T =

(
0 −1
1 0

)
Hence it is sufficient to check condition (1) for these matrices.

Clearly Gk(z + 1) = Gk(z). Also,

Gk
(
−1
z

)
=

∑
(m,n)∈Z2\(0,0)

1
(m−1

z +n)k = zk ∑
(m,n)∈Z2\(0,0)

1
(nz+m)k = zkGk(z)

It can be shown that Gk(z) is holomorphic at infinity by showing it
is bounded by the value at ω = e2πi/3 and furthermore

Gk(∞) = lim
z→∞

∑
(m,n)∈Z2\(0,0)

1
(mz + n)k =

∑
n∈Z\0

1
nk = 2ζ(k)
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The space of modular forms

The vector space of modular forms of weight k is denoted by Mk
and the space of cusp forms by Sk

Theorem
The space M = ⊕k∈ZMk of all modular forms on SL(2,Z) is
isomorphic to C[G4,G6]

Proof Sketch
We obtain a bound on dimension of Mk by computing a contour
integral around the fundamental domain of the action of SL(2,Z)
on H
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Proof Sketch

f be a non-zero modular form of weight k.
Let vp(f ) = degree of zero at p.
Then,
v∞(f )+ 1

2 vi (f )+ 1
3 vω(f )+

∑
p∈H/Γ

vp(f ) = k
12 -1/2 0 1/2

i
ww2

This gives us that Mk = 0 for k ≤ 2 and odd k
Furthermore, we can establish the following isomorphisms:

Mk ∼= Sk ⊕ CGk and Mk−12 ∼= Sk

The second comes from recognizing
4 = 603(G4(z))3 − 27 · 1402(G6(z))2 is a cusp form of weight 12.
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Using the isomorphisms, one can show that Mk has dimension 1
for k = 4, 6, 8, 10 and explicitly producing basis elements:
G4,G6, (G4)2,G4G6 respectively.

For higher k, the dimension of the space is bk/12c from the second
isomorphism and a basis for the space is {Ga

4 Gb
6 | 4a + 6b = k}

proving the theorem.
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Congruence subgroups of SL(2, Z)

Definition
The principle congruence subgroup of level N is denoted:

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣
(

a b
c d

)
≡
(

1 0
0 1

)
mod N

}

A congruence subgroup Γ of level N is any subgroup of SL(2,Z)
such that Γ(N) ⊂ Γ ⊂ SL(2,Z).
We will focus on the congruence subgroup

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣
(

a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N

}
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Modular forms on subgroups

Let γ =
(

a b
c d

)
∈ SL(2,Z) and f : H→ C holomorphic. Define

f [γ]k = j(γ, z)−k f (γ(z)) where j(γ, z) = cz+d and γ(z) = az + b
cz + d

Definition
Let k be any integer and Γ be a congruence subgroup. A
holomorphic function f : H→ C is a modular form of weight k
with respect to Γ if

I f [γ]k = f (z) for all γ ∈ Γ.
I f [γ]k is holomorphic at ∞ for all γ ∈ SL(2,Z).
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The condition f [γ]k = f (z) for all γ ∈ Γ is consistent with
condition 1 for modular forms of SL(2,Z).

If f [γ]k(z) = f (z), then (cz + d)−k f ( az+b
cz+d ) = f (z) giving us

f
(

az+b
cz+d

)
= (cz + d)k f (z)

The vector space of modular forms of weight k over Γ is denoted
by Mk(Γ)

Note
j(γγ′, z) = j(γ, γ′(z))j(γ′, z) and f [γγ′]k = (f [γ′]k)[γ]k .
Thus checking the first condition is equivalent to checking it for a
generating set of Γ
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The space M2(Γ0(4)) and the Theta function

Theorem
θ(z)4 is an element of M2(Γ0(4))

Proof
First we note that Γ0(4) is generated by ±

(
1 1
0 1

)
,±
(

1 0
4 1

)
Clearly θ(z) =

∑
m∈Z

e2πizm2 = θ(z + 1)

We use the Poisson summation formula:
∑

n∈Z f (n) =
∑

n∈Z f̂ (n)
(where f̂ is the fourier transform of f ) to show θ(−1

4z ) =
√
−2izθ(z)

Defining f (x) = e−πtx2 gives us

f̂ (n) =
∫ ∞
−∞

e−πtx2−2πixndx = e
πn2

t

∫ ∞
−∞

e−πt(x− ni
t )2dx

= e
πn2

t

∫ ∞
−∞

e−πtx dx = 1√
t

e
πn2

t
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Proof (contd.)
... f̂ (n) = 1√

t e πn2
t Substituting z = −t

2i gives us

θ
(−1

4z
)

=
∑

e
π
t n2 =

√
t
∑

e−πtn2 =
√
−2izθ(z)

This implies θ
( z

4z + 1
)

= θ
( −1

4( 1
4z − 1)

)
=
√

2i( 1
4z + 1)θ(−1

4z − 1)

=
√

2i( 1
4z + 1)θ(−1

4z )

=
√

2i( 1
4z + 1)

√
−2iz θ(z)

=
√

4z + 1 θ(z)

Raising to the fourth power proves the modularity of θ(z)4.
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Modular forms on subgroups

Modular forms (of weight 2k) can be as k forms invariant of the Γ
action: γ : z 7→ az+b

cz+d

Definition
Let k be any integer and Γ be a congruence subgroup. A
holomorphic function f : H→ C is a modular form of weight 2k
with respect to Γ if

I f (z)(dz)k is a k form defined on H/Γ
I f [γ]k is holomorphic at ∞ for all γ ∈ SL(2,Z).

This is equivalent to the previous definition because
d(γ(z)) = d( az+b

cz+d ) = ad−bc
(cz+d)2 dz = dz

(cz+d)2 Hence,

f (γ(z))(dγ(z))k = f (γ(z)) (dz)k

(cz+d)2k = f (z)(dz)k

⇐⇒ (cz + d)−2k f (γ(z)) = f (z)
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Dimension of M2(Γ0(4))

Modular forms of weight 2 can be thought of as 1-forms on the
Riemann surface H/Γ0(4). We find a fundamental domain of H for
this action by Γ0(4).

Since the translation matrix:
(

1 1
0 1

)
is

in the subgroup, the fundamental
domain is contained in {|Im(z)| ≤ 1

2}.

For each matrix
(

a b
c d

)
∈ Γ0(4), draw

semicircles centered at a
c with radius 1

|c| .
-1/2 0 1/21/4-1/4

 1  0
-4  1 1  0

4  1

1  0
8  1

The fundamental domain for the action by Γ0(4) is the region
outside the largest semicircles.
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Dimension of M2(Γ0(4))

The fundamental domain under appropriate identification is a
sphere with 3 punctures.

1 1

2 2

P1

P3

P2

8

0 1

Any 1-forms on this thrice punctured sphere can have simple poles
at each of the punctures. Thus the space of 1-forms is generated
by 2 elements: dz

z and dz
z−1 . The 1-form a dz

z + b dz
z−1 has simple

poles at 0 and 1. It also has a simple pole at infinity:

Set ξ = 1
z . dξ = −1

z2 dz . So the 1-form becomes: −a dξ
ξ − b dξ

ξ(1−ξ)
which has a simple pole at ξ = 0

Thus dimM2(Γ0(4)) = 2
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Dimension of Mk(Γ)

There are general formulas for the dimension of the space of
modular forms of weight k over a subgroup Γ.

dimMk(Γ) = (k − 1)(g − 1) +
⌊k

4
⌋

e2 +
⌊k

3
⌋

e3 + k
2 e∞

where g is the genus of the Riemann surface H/Γ
e2 is the number of orbits of elliptic points of order 2
e3 is the number of orbits of elliptic points of order 3
e∞ is the number of orbits of cusps
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Almost invariance of G2

The function G2(z) =
∑

(m,n)∈Z2\0

1
(mz+n)2 isn’t absolutely convergent.

However it is conditionally convergent written as∑
m∈Z

∑
n∈Zm

1
(mz+n)2 where Zm = Z \ 0 if m = 0 and Z otherwise.

Consider πcotπz = 1
z +

∞∑
d=1

1
z−d + 1

z+d .

Also, πcotπz = π cosπz
sinπz = πi eiπz +e−iπz

eiπz−e−iπz = −πi − 2πi
∞∑

n=0
e2πinz

Taking the derivative of πcotπz ,
∞∑

d=−∞
1

(z+d)2 = −4π2
∞∑

n=0
ne2πinz
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Almost invariance of G2

G2(z) =
∑
m∈Z

∑
n∈Zm

1
(mz + n)2

=
∑
n 6=0

1
n2 +

∑
m>0

∑
n∈Z

1
(mz + n)2 +

∑
m<0

∑
n∈Z

1
(mz + n)2

= 2ζ(2) + 2
∑
m>0

∑
n∈Z

1
(mz + n)2

= 2ζ(2) + 2
∑
m>0
−4π2

∞∑
n=0

ne2πinmz = 2ζ(2)− 8π2
∞∑

n=1
σ(n)e2πinz

We have
∣∣∣ ∑

m>0

∞∑
n=0

ne2πinmz
∣∣∣ ≤ C

∞∑
m>0

1
|(1−e2πizm)2| ≤

C ′
∞∑

m>0
|e−4πimz | = C ′′

1−|e−4πiz |
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Almost invariance of G2(z)

It is clear that G2(z) = 2ζ(2)− 8π2 ∑
m>0

∞∑
n=0

ne2πinmz = G2(z + 1)

With more computation, one can show that

G2

[(
0 −1
1 0

)]
2

(z) = G2(z)− 2πi
z

Inductively one shows G2[γ]2(z) = G2(z)− 2πic
cz+d where

γ =
(

a b
c d

)
∈ SL(2,Z)

If we define G ′2(z) = G2(z)− π
Im(z) , the above statement gives

G ′2[γ]2(z) = G ′2(z) but G ′2 is not holomorphic.
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Weak modular forms with respect to Γ0(4)

Consider the functions G2,N(z) = G2(z)− NG2(Nz).

By straightforward computation G2,N [γ]2 = G2,N(z) for all
γ ∈ Γ0(N).

If we can prove these are holomorphic at ∞, we have
G2,N ∈M2(Γ0(N)). So, G2,4 ∈M2(Γ0(4)) and
G2,2 ∈M2(Γ0(2)) ⊆M2(Γ0(4))
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A bounding theorem

Theorem
Let f : H→ C be weakly modular on H, with respect to Γ, a
congruence subgroup of level N. If there exist positive constants
C , r , such that the Fourier expansion of f satisfies
f (z) =

∑
n≥0 ane2πinz/N with an ≤ Cnr for all n > 0, then

|f (z)| ≤ C0 + C
(∫ ∞

0
tr e−2πty/Ndt

)
+ C1

y r

Proof
We have |f (z)| ≤ |a0|+

∑
n>0 Cnr e−2πiny/N .

Consider the function g(t) = tr e−2πty/N .

g ′(t) > 0 when t ∈ (0, rN
2πy ) and g ′(t) < 0 when t > rN

2πy
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Proof (contd.)
... Calling k =

⌊
rN

2πy

⌋
, we get

k−1∑
1

nr e−2πiny <
k∫
0

tr e−2πty/Ndt and
∞∑

k+2
nr e−2πiny <

∞∫
k

tr e−2πty/Ndt

Thus

|f (z)| ≤ |a0|+ C
(

k r e−2πky/N + (k + 1)r e−2π(k+1)y/N

+
k−1∑

1
nr e−2πiny +

∞∑
k+2

nr e−2πiny
)

≤ C0 + C
( ∞∫

0

tr e−2πty/Ndt
)

+ C1
y r
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Theorem
If a weakly modular function satisfies the above condition on
fourier coefficients, it is a modular form with respect to Γ.

Proof
For all γ ∈ SL(2,Z), we need f [γ]k to be holomorphic at ∞. f [γ]k
is invariant under γ−1Γγ and hence has a Laurent expansion:
f [γ]k =

∑
n∈Z bne2πinz/N .

As z →∞,
|f [γ]k | = (cz + d)−k f (γ(z)) = O(y−k)O((Im(γ(z))−r ) = O(y r−k)

Thus, limz→∞|f [γ]ke2πiz/N | = limz→∞O(y r−k)e−2πy/N → 0
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Elements of M2(Γ0(4))

The functions G2,2 and G2,4 have fourier expansions as follows:

G2,2(z) = G2 − 2G2(2z)

= 2ζ(2)− 8π2
∞∑

n=1
σ(n)e2πizn − 2

(
2ζ(2)− 8π2

∞∑
n=1

σ(n)e4πizn
)

= −π
2

3 − 8π2
∞∑

n=1

( ∑
d |n,d /∈2Z

d
)

e2πizn

Similarly, G2,4(z) = −π2 − 8π2
∞∑

n=1

( ∑
d |n,d /∈4Z

d
)

e2πizn

The fourier coefficients are bounded by 8π2σ(n) ≤ 8π2n2 hence,
G2,2,G2,4 ∈M2(Γ0(4))
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Proving Jacobi’s four square theorem

We have the following:
I θ4(z) ∈M2(Γ0(4))
I dimM2(Γ0(4)) = 2
I G2,2 and G2,4 are a basis for M2(Γ0(4))

Thus, θ4(z) = aG2,2 + bG2,4.

1 + 8e2πiz + ... = −aπ2

3 (1 + 24e2πiz + ...)− bπ2(1 + 8e2πiz + ...)

Comparing coefficients gives us

θ4(z) = −1
π2 G2,4 =

∑
n∈Z

(
8

∑
d |n,d /∈4Z

d
)

e2πizn

25 / 26



References

I https://web.stanford.edu/∼aaronlan
/assets/landesman junior paper.pdf

I Diamond, Fred, and Shurman, Jerry. A First Course in
Modular Forms. New York: Springer, 2005.

I Serre, J.-P. A Course in Arithmetic. New York: Springer, 1973

26 / 26


	Modular forms

