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The Four Square Theorem

Theorem

Let n € N, then,

ra(n) = #{(a,b,c,d) € Z* | 2+ b* + P +d’ = n} =

> &d

d|n,d g4z
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The Four Square Theorem

Theorem

Let n € N, then,

n(n) = #{(a,b,c,d) e Z* | 2+ P+ 2 +d>=n} = Y 8d

d|n,d g4z
Theta functions
Define 6(z) = 3. €*™ 2™ on H.
meZ
H(Z)k — Z ( Z 1) e27rizn — Z rk(n)e27rizn
neZ (‘917‘“3k)|za,2:" n€eZ

So, 0(z)* = 3 r(n)e*izn
nez

2/26



Modular forms on SL(2, Z)

Definition
Let k be any integer. A holomorphic function f : H — C is a
modular form of weight k if

> f(%) = (cz + d)*f(z) for all (i Z) € SL(2,Z).

> f is holomorphic at oc.
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Modular forms on SL(2, Z)

Definition
Let k be any integer. A holomorphic function f : H — C is a

modular form of weight k if
z a b
> f(—izig) = (cz + d)*f(z) for all (c d) € SL(2,Z).

> f is holomorphic at oc.

Holomorphic at infinity
We have f(z + 1) = (1)f(z) = f(z).
Hence f(z) = g(e*%) for some holomorphic g : D\ {0} — C.

Thus g(q) has a laurent series g(g) = Y. an,q” where g =e

n=—0o0

2miz

We say f is holomorphic at oo if a, = 0 for all n < 0.

Additionally, f is a cusp form if ag =0
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Modular forms on SL(2, Z)

Example
Consider the functions Gx(z) = >

(m,n)€Z2\(0,0)

(Z+) for kK > 3.

. . 11 0 -1
SL(2,7) is generated by matrices S = <0 1) , T = (1 0 >

Hence it is sufficient to check condition (1) for these matrices.
Clearly Gi(z + 1) = Gi(z). Also,
Gk(%) Z % :Zk Z W _Zka(Z)

(m,n)€72\(0,0) (m7+") (m,n)€72\(0,0)

It can be shown that Gi(z) is holomorphic at infinity by showing it

is bounded by the value at w = e2™/3 and furthermore
(m,n)€Z2\(0,0) (mz + n) nezno !
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The space of modular forms

The vector space of modular forms of weight k is denoted by M
and the space of cusp forms by Sy

Theorem
The space M = @z My of all modular forms on SL(2,7) is
isomorphic to C[Ga, G|

Proof Sketch

We obtain a bound on dimension of M by computing a contour
integral around the fundamental domain of the action of SL(2,7Z)
on H
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Proof Sketch

f be a non-zero modular form of weight k.
Let v,(f) = degree of zero at p.
Then,

voo( 1)+ 3v(F) +5%(0)+ X vp(f) =1 = w
peH/T

This gives us that My =0 for k < 2 and odd k
Furthermore, we can establish the following isomorphisms:

M =25, CG, and Mi_15 = S

The second comes from recognizing

A = 603(Gy(z))3 — 27 - 140%(Gg(2))? is a cusp form of weight 12.

6
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Using the isomorphisms, one can show that M has dimension 1
for k =4,6,8,10 and explicitly producing basis elements:
Gy, G, (G4)2, G4 Gg respectively.

For higher k, the dimension of the space is | k/12] from the second
isomorphism and a basis for the space is {G7G® | 4a+ 6b = k}
proving the theorem.
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Congruence subgroups of SL(2, Z)

Definition
The principle congruence subgroup of level N is denoted:

r(N) = { (f_f Z) c 5L(2,Z)’ (i 2) = (é 2) mod N}

A congruence subgroup I of level N is any subgroup of SL(2,7Z)
such that [(N) C I C SL(2,Z).

We will focus on the congruence subgroup
a b a b\ _[x x
Mo(N) = { <c d) € 5L(2,Z)| (c d) = (O *> mod N}
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Modular forms on subgroups

Let v = (i 3) € SL(2,Z) and f : H — C holomorphic. Define

az+b
cz+d

IVl = (v, 2) *F(7(2)) where j(v,2) = cz+d and y(z) =

Definition

Let k be any integer and [ be a congruence subgroup. A
holomorphic function f : H — C is a modular form of weight k
with respect to I if

> [yl = f(z) for all y € T.
> f[v]k is holomorphic at oo for all v € SL(2,7Z).
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The condition f[y]x = f(z) for all v € T is consistent with
condition 1 for modular forms of SL(2,Z).

If fly]x(z) = f(z), then (cz + d)’kf(izz—_tg) = f(z) giving us
F(ZLL) = (cz + d)<F(2)

The vector space of modular forms of weight k over I is denoted

by M (I")

Note

J(',2) =i(v. 7' (2)i(v; 2) and [y Tk = (F[YTi) Y]k

Thus checking the first condition is equivalent to checking it for a
generating set of [
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The space M3(lo(4)) and the Theta function

Theorem
0(z)* is an element of M3(To(4))
Proof

. , 11 10
First we note that g(4) is generated by + <0 1) , <4 1>
Clearly 6(z) = 3 e2™izm* = g(z + 1)

meZ

We use the Poisson summation formula: 3,z f(n) = 3 ez F(n)

(where  is the fourier transform of f) to show 0(72) = V—2iz0(z)
Defining f(x) = e ™ gives us

71"72

o0 o0
F(n) = / e 2Ny = T [ e ) gy
— 00

7I'I72 o0 1 7rn2
= et / e ™ dx = —e'¢
—00 ﬁ
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Proof (contd.)
A, 7TI'I2
.. f(n)= %eT Substituting z = 5t gives us

0(50) = Y et = VEY e ™ =V 2izd(2)

This implies 0(

) =i )
=20+ 00 -
= \/2i(3; + 1A(3)
= 2i( £ + 1)V=2iz 0(z)

=V4z+106(z)

Raising to the fourth power proves the modularity of (z)*.
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Modular forms on subgroups

Modular forms (of weight 2k) can be as k forms invariant of the I'

[ . az+b
action: v :z = 4

Definition

Let k be any integer and ' be a congruence subgroup. A
holomorphic function f : H — C is a modular form of weight 2k
with respect to I if

» f(z)(dz)¥ is a k form defined on H/I
> f[7]k is holomorphic at oo for all v € SL(2,Z).

This is equivalent to the previous definition because

d(v(2)) = d(215) = 285 dz = 5% Hence,

F((D)(d1(2)) = F((2) L = F(2)(de)*
= (cz+d)*F(1(2)) = £(2)
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Dimension of Mj(Ix(4))

Modular forms of weight 2 can be thought of as 1-forms on the
Riemann surface H/lo(4). We find a fundamental domain of H for
this action by p(4).

. . . 1 1)
Since the translation matrix: 0 1]
in the subgroup, the fundamental Lo
domain is contained in {|Im(z)| < 1}. G i)
P4
0

N s

For each matrix (i 3) € o(4), draw

-1/2 -1/4 0 1/4 1/2
semicircles centered at g with radius ﬁ

The fundamental domain for the action by I'g(4) is the region
outside the largest semicircles.
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Dimension of Mj(Ix(4))

The fundamental domain under appropriate identification is a
sphere with 3 punctures.

Any 1-forms on this thrice punctured sphere can have simple poles
at each of the punctures. Thus the space of 1-forms is generated
by 2 elements: % and dz . The 1-form a 2+ b dz has simple
poles at 0 and 1. It aIso has a simple pole at |nf|n|ty

Set £ = % dé = ;—}dz. So the 1-form becomes: —a% b (fgg)
which has a simple pole at £ =0

Thus dimM([p(4)) =2
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Dimension of M (')

There are general formulas for the dimension of the space of
modular forms of weight k over a subgroup I.

. k k k
dimM(") = (k = 1)(g — 1) + |7 |e2 + [ 3]es + S
where g is the genus of the Riemann surface H/I
e is the number of orbits of elliptic points of order 2
ez is the number of orbits of elliptic points of order 3
€so is the number of orbits of cusps

16
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Almost invariance of G»

The function Gy(z) =
(m,n)€Z2\0
However it is conditionally convergent written as

DD %,1)2 where Zy,, = Z\ 0 if m =0 and Z otherwise.

m isn't absolutely convergent.

mEZ n€EZLm (mz
- 1, = 1 1
Consider Teotnz = 3 + 3. ;=5 + 75
d=1
. . [e.]
RNT 4 —imz . . :
Also, mcotnz = w2 = ﬂlz,-,,zfz,,-” = —mi—27i Y e>"inz
n=0
. . . 3 1 2 = 2 H
Taking the derivative of mcotmwz, . GHdE = —47° > nes™n*
d=—o0 n=0
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Almost invariance of G»

ZZ mz—l—n

meZ n€Zm
+
; mzw ; (mz + n mz<0 ; (mz + n)
=2¢(2) +2
ngoé (mz + n)?
00
‘|‘ 2 Z 47T2 Z ne27rmmz —_ 24(2) _ 87T2 Z O_(n)e27rinz
m>0 n=1

We have | > Z ne7rinmz| <
m>0 n=0
_ "
c’ Z |e 4TI’ImZ| — %
m>0

m>0\(1e 7]
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Almost invariance of Gy(z)

o0 .

It is clear that Gy(z) = 2¢(2) — 872 3 3 ne®™nmz = Gy(z + 1)
m>0 n=0

With more computation, one can show that

0 -1 i
(i

Inductively one shows Gy[v]2(z) = Go(z) —

N = (j Z) € SL(2,7)

If we define G5(z) = Ga(z) — Tm(z) the above statement gives

Gy[v]2(z) = G5(z) but G} is not holomorphic.

2mic
cz+d

where
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Weak modular forms with respect to o(4)

Consider the functions Gy n(z) = Go(z) — NGo(Nz).

By straightforward computation G n[Y]2 = G n(2) for all
v € To(N).

If we can prove these are holomorphic at co, we have
Go.n € Ma(To(N)). So, Goa € Ma(lo(4)) and
G272 € Mz(ro(z)) - Mz(ro(4))
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A bounding theorem

Theorem

Let f : H — C be weakly modular on H, with respect to T, a
congruence subgroup of level N. If there exist positive constants
C, r, such that the Fourier expansion of f satisfies

f(2) = 50 an€2 /N with a, < Cn" for all n > 0, then

> C
() < Go+ c( / tre_2“ty/th> G
0
Proof
We have |f(z)| < |ao| + X uq Cn"e=27mY/N,

Consider the function g(t) = t"e=27%/N,

g'(t) > 0 when t € (0, ) and g'(t) < 0 when t > S
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Proof (contd.)

.. Calling k = {YJ we get Z nfe2miny < ft’ —2rty/N gt and
Z n"e —2miny < f the —27rty/th
k+2
Thus

|f(z)| < lao] + C(k’ezﬂky/’v +(k+ 1)fe*277(k+1)y/N

—2miny r —27rlny
+ Z We 2 L3 )
k+2
0

< G+ C(/t’e‘2”tY/th> + 3
0
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Theorem
If a weakly modular function satisfies the above condition on
fourier coefficients, it is a modular form with respect to I.

Proof
For all v € SL(2,Z), we need f[v]x to be holomorphic at co. f[v]x
is invariant under v 1y and hence has a Laurent expansion:

f[’Y]k — ZnEZ bne27rinz/N_

As z — o0,
7kl = (cz + d) " F(7(2)) = O(y *)O((Im(7(2))™") = O(y"~*)

Thus, lim,_eo|F[]c€2™2/N| = lim,_0 O(y"¥)e=2™/N - 0
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Elements of M(Io(4))

The functions G and Gy 4 have fourier expansions as follows:

G272(Z) = G2 — 2G2(22)

= 2((2) — 8n? i o(n)e? = 2(2<(2) —8x2 i O.(n)e4ﬂ'izn)

_7r28200<zd)27rizn
_—3—7TZ e

n=1 \d|n,d¢27Z

00
Similarly, G2,4(z) — 712 _8x2 Z ( Z d> e2mizn

n=1 " d|n,d¢4Z

The fourier coefficients are bounded by 872c(n) < 87%n? hence,
Go2, Gog € M2([o(4))
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Proving Jacobi's four square theorem

We have the following:
> 0%(z) € Ma(o(4))
> dimM;,([(4)) =2
» G2 and Gy 4 are a basis for My (Io(4))

Thus, 04(2) = aG272 + bG274.

— 37T2

1+8e%™2 4 =
+8e°™Z 4 3

Comparing coefficients gives us

0*(z) = ;—ZIGQA = Z (8 Z d) g2mizn

n€Z  d|n,d¢4z

(1+24€*™2 4 ..) — br?(1 + 8> 4 ...)
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